

Sun Microsystems, Inc.
www.sun.com

Implementing Service-Oriented
Architectures (SOA)

with the Java EE 5 SDK

By Gopalan Suresh Raj, Binod PG, Keith Babo, and Rick Palkovic

May 2006, Revision 03

Please
Recycle

Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, AnswerBook2, docs.sun.com, NetBeans, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054, États-Unis. Tous droits réservés.

Sun Microsystems, Inc. possède les droits de propriété intellectuels relatifs à la technologie décrite dans ce document. En particulier, et sans
limitation, ces droits de propriété intellectuels peuvent inclure un ou plusieurs des brevets américains listés sur le site
http://www.sun.com/patents, un ou les plusieurs brevets supplémentaires ainsi que les demandes de brevet en attente aux les États-Unis et
dans d’autres pays.

Ce document et le produit auquel il se rapporte sont protégés par un copyright et distribués sous licences, celles-ci en restreignent l’utilisation,
la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Tout logiciel tiers, sa technologie relative aux polices de caractères, comprise, est protégé par un copyright et licencié par des fournisseurs de
Sun.

Des parties de ce produit peuvent dériver des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée
aux États-Unis et dans d’autres pays, licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, AnswerBook2, docs.sun.com, NetBeans, et Solarissont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux États-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux États-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface utilisateur graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox dans la recherche et le développement du concept des interfaces utilisateur visuelles ou graphiques
pour l’industrie informatique. Sun détient une license non exclusive de Xerox sur l’interface utilisateur graphique Xerox, cette licence couvrant
également les licenciés de Sun implémentant les interfaces utilisateur graphiques OPEN LOOK et se conforment en outre aux licences écrites de
Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DÉCLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES DANS LA LIMITE DE LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE À LA QUALITÉ MARCHANDE, À L’APTITUDE À UNE UTILISATION PARTICULIÈRE OU À
L’ABSENCE DE CONTREFAÇON.

Contents

Service-Oriented Architectures and the Java EE 5 SDK 6

Java EE Platform and Web Services 7

JAX-WS 2.0 8

Java EE Web Service Architecture 8

EJB Service Implementation Bean Example 9

Client View of the Java EE Web Service 11

Java Business Integration (JBI) – JSR 208 14

The JBI Meta-Container 15

Service Engines 16

Binding Components 16

Normalized Message Router 17

JBI Normalized Message 17

Delivery Channel 18

JBI Message Exchange Patterns 19

Service Invocation Patterns 19

In-Only Message Exchange Pattern 20

Robust In-Only Message Exchange Pattern 20

In-Out Message Exchange Pattern 21

In Optional-Out Message Exchange Pattern 21

JBI Message Exchange Routing 22
iii

Information in the Service Units and Service Assemblies Routing 24

Service Unit Deployment for a Service Engine 24

JBI Composite Application Service Assembly 25

Service Unit Deployments Intended for a Binding Component 26

Sample Descriptors 26

JBI Management, Monitoring, and Administration 28

Development of a JBI Component (Service Engine or Binding Component) 29

Service Unit and Service Assembly Creation and Packaging 29

Service Assembly Deployment to the JBI Environment 30

Java EE Service Engine 32

Role of Java EE Service Engine As a Service Provider 32

Role of Java EE Service Engine As a Service Consumer 33

HTTP/SOAP JBI Binding Component 36

WS-BPEL JBI Service Engine 38

Putting It All Together: The Loan Processing Composite Application 40

Business Use Case 40

Implementation With JBI 41

Web Services Business Process Execution Language (WS-BPEL) 45

BPEL – The Language in a Nutshell 45

The process Definition 46

The import Element 47

The partnerLinkType and role Definitions in WSDL Files 48

The partnerLinks and partnerLink Definitions 49

The variables and variable Definitions 50

Structured Activity: The sequence Element 51

Web Service Activity: The receive Element 52
iv Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

Basic Activity: The assign, copy, from, and to Elements 53

Web Service Activity: The invoke Element 54

Web Service Activity: The reply Element 55

Basic Activity: The wait Element 56

Basic Activity: The throw Element 56

Basic Activity: The exit Element 56

Basic Activity: The empty Element 56

Structured Activity: The while Element 57

Structured Activity: The if Element 57

Structured Activity: The pick Element 57

Structured Activity: The flow Element 57

Structured Activity: The compensationHandler Element 57

Structured Activity: The correlationSets Element 58

Structured Activity: The eventHandlers Element 58

Structured Activity: The scope Element 58

Project OpenESB and JBI Support 59

Centralized Management 59

Location Transparency 60

Conclusion 61

References 61

OpenESB 61

Service-Oriented Architecture 61

Resources 62

Programming Tools 62

Example Application 62

Demonstration Videos for Creating Example Application 62

Index 63
v

Service-Oriented Architectures and
the Java EE 5 SDK

Service-oriented architectures (SOA) promise to implement composite applications
that offer location transparency and segregation of business logic. Location
transparency allows consumers and providers of services to exchange messages
without reference to one another’s concrete location. Segregation of business logic
isolates the core processes of the application from other service providers and
consumers.

Together, these features let you replace or upgrade individual components in the
composite application without affecting other components or the process as a whole.
Moreover, you can independently specify alternative paths through which the
various parts of the composite application exchange messages.

This article presents concepts and language constructs necessary to developing a
SOA composite application in Java EE 5 and describes an example application based
on a loan application use case. Examples from the sample application are used
throughout the article.

In the loan application use case, a user applies online for a loan by filling out a loan
request with necessary financial and personal information. The application’s
business logic verifies the user information and accepts or rejects the loan request.
The use case is summarized in FIGURE 1.
6 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

FIGURE 1 Business Use Case Flow Chart for Example Composite Application

To download the files related to this NetBeans™ 5.5 project, refer to the section titled
“Resources” on page 62.

The project uses the following components:

� The HTTP/SOAP binding component
� The Business Process Execution Language (BPEL) Service Engine
� The Java EE Service Engine (from the GlassFish project)

Java EE Platform and Web Services

Beginning with J2EE 1.4, the Java EE platform has fully supported both clients of
web services and web service endpoints. As a result, a Java EE component can be
deployed as a web service at the same time it acts as a client of a web service
deployed elsewhere.

JAX-WS (Java API for XML Web Services) is the primary API for web services in Java
EE 5. It supports web service calls by using the SOAP/HTTP protocol as constrained
by the WS-I Basic Profile specification.

Java EE web services are defined by the specification Implementing Enterprise Web
Services (JSR 109). The specification describes the deployment of web service clients
and web service endpoints in Java EE releases as well as the implementation of web
service endpoints using Enterprise JavaBeans (EJB) components. Java EE web
services, along with JBI, provide a strong foundation for implementing a SOA.
 Service-Oriented Architectures and the Java EE 5 SDK 7

https://jax-ws.dev.java.net/
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.jcp.org/aboutJava/communityprocess/final/jsr109/
http://www.jcp.org/aboutJava/communityprocess/final/jsr109/

JAX-WS 2.0

JJAX-WS 2.0 replaces an older API, JAX-RPC 1.1 (Java API for XML-based Remote
Procedure Call), extending it in many areas. The new specification supports multiple
protocols, such as Simple Object Access Protocol (SOAP) 1.1, SOAP 1.2, and XML.
JAX-WS uses JAXB 2.0 as its data binding model, relying on usage annotations to
considerably simplify web service development. It also uses many annotations
defined by the specification Web Services Metadata for the Java Platform and
introduces steps to plug in multiple protocols instead of HTTP only. In a related
development, JAX-WS defines its own message-based session management.

Java EE Web Service Architecture

Web service architecture, in general, allows a service to be defined abstractly,
implemented, published and discovered, and used interoperably. You can decouple a
web service implementation from its use by a client in a variety of ways-in
programming model, logic, and transport. As a consequence, a web service that has
been developed with the .NET platform can be used by a Java EE application, and
vice versa.

In simplest terms, a service instance, called a Port component, is created and
managed by a Java EE container, which in turn can be accessed by the client
application. The Port component can also be referenced in client, web, and EJB
containers.
8 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

http://java.sun.com/webservices/jaxb/
http://www.jcp.org/aboutJava/communityprocess/pfd/jsr181/index.html

FIGURE 2 Java EE Web Service Architecture

The life cycle of a Port component’s implementation is specific to and completely
controlled by its container-the two are intimately linked.

The Port component associates a Web Service Definition Language (WSDL) port
address with an EJB service implementation bean-a Java class that provides the
business logic of the web service and that always runs in an EJB container. Because
the service implementation is specific to a container, the service implementation also
ties a Port component to its container’s behavior. The methods that the service
implementation bean implements are defined by the Service Endpoint Interface.

A container provides a listener for the WSDL port address and a means of
dispatching the request to the service implementation bean. For example, if you
deploy an EJB service implementation bean by using basic JAX-WS SOAP/HTTP
transport, the bean will run in a Java EE EJB container and an HTTP listener will be
available in the container for receiving the request.

EJB Service Implementation Bean Example

The following code shows an example EJB service implementation bean.
 Service-Oriented Architectures and the Java EE 5 SDK 9

package com.sun.jbi.blueprints.loanprocessor;

import javax.ejb.Stateless;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.WebParam;

@Stateless()
@WebService()

public class LoanProcessorEJBBean {

 /**
 * Process Loan Application Web service operation
 */

 @WebMethod
 public String processApplication(
 @WebParam String socialSecurityNumber,
 @WebParam String applicantName,
 @WebParam String applicantAddress,
 @WebParam String applicantEmailAddress,
 @WebParam int applicantAge,
 @WebParam String applicantGender,
 @WebParam double annualSalary,
 @WebParam double amountRequested) {

 int MINIMUM_AGE_LIMIT = 18;
 int MAXIMUM_AGE_LIMIT = 65;
 double MINIMUM_SALARY = 20000;
 int AVERAGE_LIFE_EXPECTANCY = 70;

 String result = "Loan Application APPROVED.";

 if(applicantAge < MINIMUM_AGE_LIMIT) {
 result =
 "Loan Application REJECTED - Reason: Under-aged "+
 applicantAge+". Age needs to be over "+
 MINIMUM_AGE_LIMIT+" years to qualify.";
 return result;
 }

10 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

Note the @Stateless and @WebService annotations: @Stateless annotates the bean
as stateless, and @WebService annotates the bean as a web service.

When the EJB service implementation bean is packaged and deployed, the
application server’s deployment tool generates a WSDL according to the rules
defined in the JAX-WS specification. It also brings up a listener so that clients can
access the service.

Client View of the Java EE Web Service

A Java EE application client, web component, EJB component, or another web
service can act as a client of a web service. The client accesses a web service through
a Service Endpoint Interface as defined by the JAX-RPC or JAX-WS specification.

 if(applicantAge > MAXIMUM_AGE_LIMIT) {
 result = "Loan Application REJECTED - Reason: Over-aged "+
 applicantAge+". Age needs to be under "+
 MAXIMUM_AGE_LIMIT+" years to qualify.";
 return result;
 }

 if(annualSalary < MINIMUM_SALARY) {
 result = "Loan Application REJECTED - Reason: Annual Salary $"+
 annualSalary+" too low. Annual Salary needs to be over $"+
 MINIMUM_SALARY+" to qualify.";
 return result;
 }

 int yearsToRepay = AVERAGE_LIFE_EXPECTANCY-applicantAge;
 double limit = annualSalary*yearsToRepay*0.5;
 if(amountRequested > limit) {
 result =
 "Loan Application REJECTED - Reason:
 You are asking for too much $"+
 amountRequested+". Annual Salary $"+annualSalary+
 ", Age "+applicantAge+" years. Your limit is $"+limit;
 return result;
 }

 return result;
 }
}

 Service-Oriented Architectures and the Java EE 5 SDK 11

FIGURE 3 Web Services Client View

Because the port can be referenced in the client, the client application can use the
@WebServiceRef annotation to access a web service, as shown in the following code
example.

package com.sun.jbi.blueprints.loanrequestor;

import javax.xml.ws.WebServiceClient;
import javax.xml.ws.WebServiceRef;

import com.sun.jbi.blueprints.loanprocessor.LoanProcessor;
import com.sun.jbi.blueprints.loanprocessor.LoanProcessorService;
/**
 * JAXWSClient is a stand-alone Java program
 * that accesses the processApplication
 * method of LoanProcessor. It makes this call
 * It makes this call through a port, a local object
 * that acts as a proxy for the remote service.
 * The port is created at development time
 * by the wsimport tool, which generates JAX-WS portable
 * artifacts based on the WSDL file.
 */
public class JAXWSClient {
 // WebServiceRef using the generated service interface type
 @WebServiceRef
 static LoanProcessorService PROCESSOR_SERVICE =
 new LoanProcessorService();
 private LoanProcessor loanProcessor;

Service
Interface

Service
Endpoint
Interface

Port

Container

Client
12 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

The Service object is a factory used by the client to get a stub or proxy that
implements the Service Endpoint Interface. The stub is the client representation of an
instance of the web service.

 public String test(String ssn, String name, String email,
 String address, int age, String sex,
 double salary, double loanAmount) {
 this.loanProcessor = PROCESSOR_SERVICE.getLoanProcessorPort();
 // make the actual call
 return this.loanProcessor.processApplication(ssn,
 name, email, address, age, sex,
 salary, loanAmount);
 }

 public static void main(String[] args) {
 JAXWSClient client = new JAXWSClient();
 String result = client.test("123-45-6789",
 "Gopalan Suresh Raj",
 "gopalan.raj@sun.com",
 "800, Royal Oaks Blvd, Monrovia, CA",
 36, "Male", 9876543, 1234567);
 System.out.println(result);
 }
}

 Service-Oriented Architectures and the Java EE 5 SDK 13

Java Business Integration (JBI) –
JSR 208

The JBI 1.0 (JSR 208) specification is an industry-wide initiative to create a
standardized integration platform for Java and business applications. JBI addresses
service-oriented architecture (SOA) needs in integration by creating a standard meta-
container for integrated services.

JBI is a messaging-based plug-in architecture. This infrastructure allows third-party
components to be “plugged in” to a standard infrastructure and enables those
components to interoperate seamlessly. It does not define the pluggable components
themselves, but defines the framework, container interfaces, behavior, and common
services. The meta- container is itself a service-oriented architecture. JBI components
describe their capabilities through the Web Service Definition Language (WSDL).

The major goal of JBI is to provide an architecture and an enabling framework that
facilitates dynamic composition and deployment of loosely coupled composite
applications and service-oriented integration components. It allows anyone to create
JBI- compliant integration plug-in components and integrate them dynamically into
the JBI infrastructure.

JSR 208 specifies two deployable archive packages (.jar files) called Service Unit
and Service Assembly. These archives contain code and standard descriptors, in a
manner similar to WAR and EAR packaging in Java EE 5.

FIGURE 1 shows the key pieces of the JBI environment:

� Service Engines – Service Engines (SE) are JBI components that enable pluggable
business logic.

� Binding Components – Binding Components (BC) are JBI components that enable
pluggable external connectivity.

� Normalized Message Router – The normalized message router (NMR) directs
normalized messages from source components to destinations according to
specified policies.
14 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

http://www.jcp.org/en/jsr/detail?id=208

� JBI Runtime Environment – The JBI runtime environment encompasses the JBI
components and the NMR. Because of its container characteristics, it is sometimes
called the JBI meta-container.

FIGURE 1 The JBI Environment

BCs and SEs can act as containers, and Service Units can be deployed to installed JBI
components. This arrangement allows the deployment (and undeployment) of
component- specific artifacts (for example, concrete WSDLs). Service Units can
describe what services are provided and consumed by the JBI component. Besides
the standard descriptor, the JBI component is responsible for interpreting the
contents of the Service Unit .jar file.

Multiple Service Units can be packaged in a Service Assembly. The Service Assembly
defines the target JBI components to which to deploy the Service Units.

The JBI Meta-Container
The JBI meta-container hosts multiple JBI components (SEs and BCs). When sending
and receiving messages outside the JBI environment, the SEs communicate using the
NMR and pass messages out to the client through a binding component. When
communication is entirely within the JBI environment, no protocol conversion,
message serialization, or message normalization is necessary because all messages
are already normalized and are in standard WSDL 2.0 format.
 Java Business Integration (JBI) — JSR 208 15

Service Engines
The JBI architecture as shown in FIGURE 2 consists of a JBI meta-container, or
runtime environment, that can run SEs, which in turn host Service Units (also called
service deployments). SEs provide services such as business logic, processing,
transformation, and routing services.

For example, you can use a WS-BPEL Service Engine to orchestrate business
processes that use WS-BPEL. Similarly, you can preserve your current investment in
existing Java EE Application Servers by wrapping your existing EJB or servlet code
as a Web service, then reusing it in a SOA with a Java EE Service Engine.

Binding Components
In the JBI environment, protocol independence is provided through BCs. BCs
provide transport or communication protocols as well as access to remote services
from within the JBI environment. They also provide access to other services in the
JBI framework. Protocol-binding components provide a proxy for services in the JBI
environment to access service providers that require a particular protocol.

BCs are custom built for each external protocol and are plugged in to the JBI meta-
container. This architecture allows any JBI component to communicate over any
protocol or transport (SOAP, JMS, and so on) as long as a BC that handles the
particular transport or protocol is plugged in to the JBI meta-container.

BCs provide interoperability between services by using protocols such as SOAP,
Simple Mail Transfer Protocol (SMTP), Java Message Service (JMS), and so on. Using
BCs, you do not need to implement those protocols in your business logic. BCs
enable loose coupling, a hallmark of SOA, by decoupling the service implementation
from the access mechanism.

The BC consumes protocol-specific message data, converts it into a JBI-specified
“normalized message,” and hands it off to the NMR for consumption by any SE.
Similarly, the BC picks up the normalized message received from the NMR,
“denormalizes” the message into a protocol-specific message, and sends it back to
the consuming client.
16 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

Normalized Message Router
The NMR provides the abstract mediated message exchange infrastructure that is the
key to interoperation between JBI components (both SEs and BCs). The NMR
receives message exchanges from all SEs and BCs and routes them to the appropriate
JBI component for processing. Message exchange between the NMR and the JBI
components are done with JBI normalized messages, which provide the
interoperability between components, as illustrated in FIGURE 2.

FIGURE 2 Messaging Between JBI Components

The messages passing through the NMR are JBI normalized messages. The NMR
focuses on sending and receiving messages, and providing a means of transferring
and propagating the transactional context and security context between the BCs and
the SEs.

JBI Normalized Message
A JBI normalized message is an XML document. A typical JBI normalized message
consists of two parts:

1. Message metadata – Also known as the message context data, the message
metadata includes context information such as:
 Java Business Integration (JBI) — JSR 208 17

� Protocol-supplied context information
� Security tokens
� Transaction context information
� Data specific to other components

2. Message payload – The message payload is a generic source abstraction that
contains all the message data. The payload conforms to an abstract WSDL
message type (see FIGURE 3), with no protocol encoding or formatting.

FIGURE 3 WSDL 2.0 Abstract Message Model

Delivery Channel
The delivery channel is a bidirectional communication pipe used by all JBI
components (SEs and BCs) to communicate with the NMR. A service consumer uses
the delivery channel to initiate service invocations, as shown in FIGURE 4.

FIGURE 4 External Service Consumer Initiates Service Request
18 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

A service provider uses its delivery channel to receive such invocations, as shown in
FIGURE 5.

FIGURE 5 External Service Provider Receives Request

Any JBI component that acts as both a service consumer and a service provider uses
the same delivery channel for both roles. Each JBI component is provided with a
single delivery channel.

JBI Message Exchange Patterns
JBI Message Exchange Patterns define an end-to-end interaction that
deterministically completes a message exchange between a service provider and a
service consumer The patterns define the sequence and cardinality of abstract
message exchange.

JBI message exchange patterns are modeled after the WSDL 2.0 message exchange
patterns. Message exchange patterns are defined from the service provider’s
perspective.

Service Invocation Patterns
Service invocation is an instance of end-to-end interaction between a service
provider and a service consumer.
 Java Business Integration (JBI) — JSR 208 19

JBI mandates four message exchange patterns, as shown in the following table:

In-Only Message Exchange Pattern
The In-Only message exchange pattern is used for one-way exchanges.

FIGURE 6 In-Only Message Exchange Pattern

1. Service consumer initiates a message exchange with an In-Only message.

2. Service provider responds with a status message to complete the message
exchange.

Robust In-Only Message Exchange Pattern
The Robust In-Only message exchange pattern is used for reliable, one-way message
exchanges.

FIGURE 7 Robust In-Only Message Exchange Pattern

Service Invocation Message Exchange Pattern (Provider View)

One-Way In-Only

Reliable One-Way Robust In-Only

Request Response In-Out

Request Optional-Response In Optional-Out
20 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

1. Service consumer initiates a message exchange with a Robust In-Only message.

2. Service provider may respond with status or fault message.

� If provider response is status, the message exchange is complete.
� If provider response is a fault, consumer responds with status to complete

message exchange.

In-Out Message Exchange Pattern
The In-Out message exchange pattern is used for two-way exchanges.

FIGURE 8 In-Out Message Exchange Pattern

1. Service consumer initiates a message exchange with an In-Out message.

2. Service provider responds with message or fault.

3. Service consumer responds with status to complete the message exchange.

In Optional-Out Message Exchange Pattern
The In Optional-Out message exchange pattern is used for a two-way exchange
when the provider’s response is optional.
 Java Business Integration (JBI) — JSR 208 21

FIGURE 9 Optional-Out Message Exchange Pattern

1. Service consumer initiates a message exchange with an In Optional-Out message.

2. Service provider responds with message, fault, or status.

� If provider responds with status, the exchange is complete.
� If provider responds with fault, consumer responds with status. Status

completes the message exchange.
� If provider responds with message, consumer may respond with fault or

status. Status completes the message exchange.
� If consumer responds with fault, provider responds with status to complete

the message exchange.

JBI Message Exchange Routing
Service Assemblies may contain deployment-provided routing information called
service connections and service link types. Service connections provide explicit
mappings from a consumer-provided address to the actual provider service
endpoint. Service link types provide additional information about a component’s
expectations as a service consumer. These expectations concern the use of service
connections to influence routing decisions made by the JBI Framework.

Each consumer declares, in its service unit metadata, its expectations concerning
how service connections are to be applied to it when it consumes a particular
service. This exchange of information is known as provider linking.

As an example, consider the HTTP/SOAP BC and the BPEL SE:
22 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

At Service Unit deployment time, the BC finds and reads the Service Unit jbi.xml
file and locates the WSDLs with all the associated information for the external
endpoint names provided. It activates all <provides> (outbound) endpoints. For the
<consumes> endpoints, it starts an HTTP server on the port specified in the
<soap:address/> tag.

FIGURE 10 Routing Exchange Between the HTTP/SOAP Binding Component and the
BPEL Service Engine

When the WS-BPEL Engine Service Unit is deployed to the BPEL SE, it reads the
jbi.xml and activates the endpoints (named after the partner link and role) for the
<provides> tag. It then finds all matching artifacts (BPEL constructs) associated
with these partner links-role pairs.
 Java Business Integration (JBI) — JSR 208 23

For an inbound request, when a request arrives at the port that matches the context
in a <soap:address/> tag, the BC sends the message to the NMR, giving the
<consumes> service/endpoint details. In this case, the service/endpoint details are
the same as the external endpoint details.

The framework determines from the descriptor that the link is a soft link and looks
up the consumer address in the service connections that have been declared in the
Service Assembly. It then maps the external endpoint name to the concrete endpoint
the BPEL SE has activated. The endpoint is named after the partner link and role.

The BPEL SE receives the request and matches the partner link and role name of the
endpoint on which it received the request to the matching BC to execute.

For an outbound request, essentially the same thing happens in the other direction.
The SE sends the message to the NMR, using the <consumes> details (partner link
and role). These details are then mapped to the concrete internal endpoint name (in
this case, the same name as the external endpoint) of the BC through the service
connection mapping in the Service Assembly descriptor.

Information in the Service Units and
Service Assemblies Routing
Routing information in Service Units and Service Assemblies involves the following
activities.

� Creating individual Service Units for each binding component, depending on the
WSDL extensions used.

� Creating a jbi.xml descriptor for each Service Unit with the <consumes> and
<provides> attributes declared.

� Creating a service connection section in the Service Assembly descriptor to
resolve all the mappings among partner links and endpoints.

Service Unit Deployment for a Service
Engine
When Service Units are intended for a Service Engine, you must create the Service
Unit deployment descriptor (jbi.xml) as defined in Section 6.3 of the JBI
specification.
24 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

According to the specification, the content of the Service Unit jbi.xml must conform
to the following rules:

� The attribute binding-component must be false.

� For each partner link with the myRole attribute, an element, provides, must be
created with the partner link name as service-name, myRole as the endpoint-
name, and the port type of the partner link type as the interface-name.

� For each partner link with the partnerRole attribute, an element, consumes,
must be created with the partner link name as service-name, partnerRole as
the endpoint-name, and the port type of the partner link type as the interface-
name.

The basic format of the Service Unit jbi.xml descriptor is as follows:

JBI Composite Application Service
Assembly
The JBI composite application Service Assembly project must create the Service
Assembly deployment descriptor (jbi.xml), as defined in Section 6.3 of the JBI
specification. There are two major enhancements:

Service Connections

� The Service Assembly jbi.xml must include a connections element specifying the
mapping between consuming and providing service endpoints.

<?xml version='1.0'?>
<jbi version="1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/jbi"
 xsi:schemaLocation="http://java.sun.com/xml/ns/jbi jbi.xsd">
 <services binding-component="false">
 <provides interface-name=QNAME
 service-name=QNAME
 endpoint-name=text/>
 <consumes interface-name=QNAME
 service-name=QNAME
 endpoint-name=text
 link-type="standard"/>
 </services>
</jbi>
 Java Business Integration (JBI) — JSR 208 25

� Unconnected service endpoints must be resolved by matching the port type
(designated by interface-name) of the consuming endpoints with that of the
providing endpoints.

Connection Elements

� A connection element must be added for each resolved pair of endpoints.

Service Unit Deployments Intended for a
Binding Component
You must create a separate service unit deployment package for each BC needed by
the project. A BC is considered needed if it implements one or more endpoints
specified in the connections section of the Service Assembly descriptor.

The BC deployment package must include all referenced WSDLs, XSDs, and
associated data files.

The Service Unit jbi.xml must specify all consuming and providing endpoints that
are implemented or used by the binding component. Note that this descriptor does
not contain any mapping to or from the concrete endpoint of an SE. Therefore, it can
be generated by static inspection of the deployment artifacts (BPEL, WSDL, and so
on) and does not rely on the port mapping, which is done at a higher level in the
Service Assembly connection section.

Each BC names the internal endpoints it provides. The consumer addresses the
endpoint according to the external endpoint, port, or interface name. Note the
contrast to SE naming, which uses partner link details.

To associate a given endpoint with a target Service Unit (and therefore target
component), look at the WSDL extensions used. For example, if a <file:binding/>
tag is present in the binding, then the endpoint is directed toward the file BC.

Sample Descriptors
Consider the following SE Service Unit jbi.xml descriptor example. For the
inbound message, the SE is the provider; for the outbound message, the SE is the
consumer.
26 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

The following code example is a binding component Service Unit jbi.xml
descriptor, targeted at only one binding component. For the inbound message, the
BC is the consumer; for the outbound message, the BC is the provider.

The following example is an excerpt from the connection section in the Service
Assembly jbi.xml. Note how it essentially maps the endpoints declared in the
above descriptors. For inbound messages, it maps from the BC consumer address
(external endpoint-name) to the concrete SE endpoint (partner link names). For
outbound messages, it maps from the SE consumer address (partner link names) to
the concrete BC endpoint (external endpoint-names).

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<jbi xmlns="http://java.sun.com/xml/ns/jbi"
 xmlns:ns1="http://localhost/loanRequestorBpel/loanRequestor"
 xmlns:ns2="http://www.seebeyond.com/eInsight/loanRequestorBpel"
 xmlns:ns3="urn:LoanProcessorEJB/wsdl"
 version="1.0">
 <services binding-component="false">
 <provides endpoint-name="loanRequestorRole_myRole"
 interface-name="ns1:IRequestLoan"
 service-name="ns2:bpelImplemented"/>
 <consumes endpoint-name="loanProcessorEJBPartnerRole_partnerRole"
 interface-name="ns3:LoanProcessorEJBSEI"
 service-name="ns2:ejbInvoked"/>
 </services>
</jbi>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<jbi xmlns="http://java.sun.com/xml/ns/jbi"
 xmlns:ns1="http://localhost/loanRequestorBpel/loanRequestor"
 xmlns:ns2="http://www.seebeyond.com/eInsight/loanRequestorBpel"
 xmlns:ns3="urn:LoanProcessorEJB/wsdl"
 version="1.0">
 <services binding-component="true">
 <provides endpoint-name="LoanProcessorEJBSEIPort"
 interface-name="ns3:LoanProcessorEJBSEI"
 service-name="ns3:LoanProcessorEJB"/>
 <consumes endpoint-name="port"
 interface-name="ns1:IRequestLoan"
 service-name="ns1:loanRequestorService"/>
 </services>
</jbi>
 Java Business Integration (JBI) — JSR 208 27

JBI Management, Monitoring, and
Administration
The JBI environment is administered with Java Management eXtensions (JMX). All
JBI components (SEs and BCs) must provide specified management interfaces. In
addition, the JBI Framework provides specified JMX Management Beans (MBeans) to
help manage the JBI environment-provided infrastructure as well as all the JBI
components.

Standard interfaces for management monitoring and administration are provided for
the following activities in any JBI environment:

� Installation of JBI components and shared libraries

� Deployment of JBI artifacts (Service Assemblies and Service Units) to installed
components

� Start/stop/shutdown of JBI components (SEs and BCs)

� Start/stop/shutdown of composite services (a group of related services) referred
to as a Service Assembly.

<connections>
 <connection>
 <consumer endpoint-name="port"
 service-name="ns1:loanRequestorService"/>
 <provider endpoint-name="loanRequestorRole_myRole"
 service-name="ns2:bpelImplemented"/>
 </connection>
 <connection>
 <consumer endpoint-name="loanProcessorEJBPartnerRole_partnerRole"
 service-name="ns2:ejbInvoked"/>
 <provider endpoint-name="LoanProcessorEJBSEIPort"
 service-name="ns3:LoanProcessorEJB"/>
 </connection>
</connections>
28 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

Development of a JBI Component
(Service Engine or Binding Component)
Before a component can be plugged in to a JBI Framework, you must implement the
following interfaces and perform related tasks.

1. Implement a Bootstrapper (implements the javax.jbi.component.Bootstrap
interface). The bootstrapper allows the installation of a component to be
customized (for example, creation of database tables as part of installation) It
traps install and uninstall events.

2. Implement your Component (implements the javax.jbi.component.Component
interface). The component functions as a single point for the JBI implementation
to query the other component-supplied interfaces as well as metadata for
component-supplied services. This implementation provides access to the
component’s life cycle implementation and Service Unit manager.

3. Implement a Component Life Cycle (implements the
javax.jbi.component.ComponentLifecycle interface). The component life
cycle manages component life cycle states such as stopped, shutdown, and
running.

4. (Optional) Implement a Service Unit Manager (implements the
javax.jbi.component.ServiceUnitManager interface). Implement a service
unit manager for components that support deployment of Service Units to the
component.

5. Create a jbi.xml deployment descriptor for the component, and package the
JBIComponent .jar file.

6. Install the new JBI component in the JBI meta-container.

Service Unit and Service Assembly
Creation and Packaging
FIGURE 11 shows how Service Units and the Service Assembly are packaged.
 Java Business Integration (JBI) — JSR 208 29

FIGURE 11 Packaging Service Units and Service Assembly

Each Service Unit contains the following elements:

� A JBI descriptor – Descriptors for services consumed and provided in a jbi.xml
file.

� Component-specific artifacts that can be deployed to a JBI component (SE or BC)

The Service Units are packaged in a composite Service Assembly. Each Service
Assembly contains the following elements:

� A JBI descriptor listing each Service Unit intended to be deployed on an SE or a
BC in a jbi.xml file

� One or more Service Units

Service Assembly Deployment to the JBI
Environment
A Service Assembly is a deployment unit that wraps multiple Service Units intended
to be deployed on multiple target JBI component containers. A Service Assembly
provides a convenient way to group many Service Unit deployments into one unit so
that they can be managed as a whole.
30 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

When you deploy a Service Assembly, the JBI deployment service breaks the
composite Service Assembly into its constituent Service Units and jbi.xml
deployment descriptors.

Based on the information provided in the jbi.xml deployment descriptors, the
deployment service deploys the Service Units to the target JBI component containers,
as shown in FIGURE 12.

FIGURE 12 Deploying From a Service Assembly to JBI Component Containers
 Java Business Integration (JBI) — JSR 208 31

Java EE Service Engine

Sun Java System Application Server 9.0, Platform Edition (hereafter Application
Server) contains a JSR 208-compliant JBI component that connects Java EE web
services and Java EE web service clients with the normalized message router (NMR).
Thus, the Java EE Service Engine can act as both a service provider and service
consumer in NMR. It is automatically installed in the JBI runtime in every Java EE
SDK installation that contains JBI.

Role of Java EE Service Engine As a
Service Provider
The Java EE Service Engine functions as a service provider by enabling an endpoint
in NMR (see FIGURE 13).
32 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

FIGURE 13 Java EE Service Engine As Service Provider

When a Java EE web service is deployed, the deployment runtime of Application
Server notifies the Java EE Service Engine so that an endpoint is enabled in the NMR
of the JBI runtime. The notification enables any component deployed in NMR to
access the Java EE web service. For example, a BPEL application running inside the
BPEL engine can access the Java EE web service by sending a normalized message to
the endpoint enabled by the Java EE Service Engine.

This way of accessing Java EE web services is an alternative to the normal web
service client access defined by JAX-WS.

Role of Java EE Service Engine As a
Service Consumer
When a Java EE application needs to access an endpoint of a service provider
deployed in the JBI runtime environment, the Java EE Service Engine acts as a bridge
between the Java EE container and the NMR. In this case, the Java EE Service Engine
normalizes the SOAP message that otherwise would have been used in the JAX-WS

Java EE
Service
Engine

Application Server

Web
Service

NMR

BPEL Engine

JMS Binding

X Binding

Endpoint

Endpoint

➀

➁

➀
➁

During Deployment, Endpoint Is Activated in NMR

A Component in the JBI Runtime Accesses a Java EE Web Service Endpoint
 Java EE Service Engine 33

communication and sends it to the NMR. This normalized message is handled by a
service that has been enabled by a service provider deployed in the JBI runtime
environment.

FIGURE 14 Java EE Component Accesses an Endpoint Registered in NMR

To route the JAX-WS requests through NMR, the service-ref element in the Sun-
specific deployment descriptor file needs to be modified as shown in the following
code example.

<sun-web-app>
 <service-ref>
 <service-ref-name>
 sun-web.serviceref/calculator
 </service-ref-name>
 <port-info>
 <wsdl-port>
 <namespaceURI>
 http://example.web.service/Calculator
 </namespaceURI>
 <localpart>
 CalculatorPort

Java EE
Service
Engine

Application Server

Java EE
Component

NMR

Endpoint

Endpoint

BPEL Engine

JMS Binding

X Binding
34 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

By changing the stub-property name="jbi-enabled" value to "false", you can
prevent the Java EE Service Engine from intercepting the request.

 </localpart>
 </wsdl-port>
 <service-endpoint-interface>
 service.web.example.calculator.Calculator
 </service-endpoint-interface>
 <stub-property name="jbi-enabled" value="true"/>
 </port-info>
 </service-ref>
 </sun-web-app>
 Java EE Service Engine 35

HTTP/SOAP JBI Binding
Component

HTTP/SOAP (HTTP/SOAPBC) is a JBI 1.0 BC that supports the SOAP protocol over
HTTP.

The HTTP/SOAPBC complies with the WSDL 1.1 and SOAP 1.1 specifications (the
reference implementation example uses WSDL 2.0, SOAP 1.2). Message exchanges to
and from the HTTP/SOAPBC use the JBI WSDL 1.1 wrapper for the normalized
message.

SOAP binding from the WSDL 1.1 specification is implemented (it does not use
HTTP Get/Post or MIME bindings). SOAP binding follows WS-I 1.0 conventions
and adds additional support for nonconforming components. It supports document-
and RPC-style web services and literal use.

FIGURE 15 HTTP/SOAP Binding Component
36 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

The HTTP/SOAPBC supports the common convention of WSDL retrieval by
appending ?wsdl to the URI. It uses XML catalogs following the OASIS Committee
Specification. XML catalogs allow the component to resolve schemas locally without
resorting to network access. HTTP/SOAPBC packages an embedded HTTP server
(Grizzly). HTTP/ SOAPBC uses asynchronous input/output in the server to service
thousands of concurrent incoming requests. Outbound requests are handled through
SOAP with Attachments API for Java (currently, SAAJ 1.2).

The HTTP/SOAPBC currently only handles ports that are not serviced by the
application server. The HTTP/SOAPBC supports JBI Service Unit deployments to
define the web services that will be provisioned or consumed. It makes use of the
WSDL extensibility (standard SOAP extensions) to define external communication
details for the web services to provision or consume.

FIGURE 16 HTTP/SOAP Runtime Configuration
 HTTP/SOAP JBI Binding Component 37

http://java.sun.com/webservices/saaj/index.jsp

WS-BPEL JBI Service Engine

The WS-BPEL JBI Service Engine (hereafter called BPEL Service Engine), shown in
FIGURE 17, is a JBI engine component that provides services for executing business
processes.

FIGURE 17 BPEL Service Engine

The BPEL Service Engine is a standard JBI 1.0 service engine component. It supports
business processes that conform to the Web Services Business Process Execution
Language (WS-BPEL) 2.0 specification. It provisions and consumes web services
described in WSDL1.1 and exchanges messages in JBI-defined XML document
format for wrapped WSDL 1.1 message parts.

The BPEL Service Engine supports request/reply, asynchronous one-way
invocations, and direct invocation between two business processes. It can monitor
endpoint status. It offers a command-line facility for building a Service Assembly
and testing the deployed service.
38 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

The BPEL Service Engine can be configured in one of three modes: static,
deployment, or runtime:

� Static – Parameter values, once loaded, can only be modified by reinstalling the
engine.

� Deployment – Parameter values can be changed without reinstallation, but only
until the engine is started or restarted; they remain in effect throughout business
process execution.

� Runtime – Parameter values can be changed even while business processes are
running. See FIGURE 18.

FIGURE 18 BPEL Service Engine Runtime Configuration
 WS-BPEL JBI Service Engine 39

Putting It All Together: The Loan
Processing Composite Application

This section presents an example of how a composite application can be created and
deployed in the JBI environment. It uses the HTTP/SOAPBC, the WS-BPEL SE, and
the Java EE SE components. It shows how these components can be orchestrated to
solve a business problem.

Download the files related to this NetBeans 5.0 project from the links given in the
section titled “Resources” on page 62 of this document.

The following JBI components are used in this example:

� WS-BPEL Service Engine
� HTTP/SOAP Binding Component (no security)
� Java EE Service Engine

The composite application is an Enterprise JavaBeans application exposed as a
WebService. The JBI Service Assembly consists of the following Service Units:

� WS-BPEL engine provider, consuming all the other provided services
� HTTP/SOAP binding consumer, for receiving requests

Business Use Case
The composite application satisfies the following business use case, illustrated in
FIGURE 19.

The user applies for a loan by filling out a loan request, including information such
as personal identifying information, amount of loan requested, and credit history.
40 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

When the loan request is received, the personal information supplied by the user is
verified across an existing database, and approval is granted or rejected based on the
information and the amount requested.

After certain formalities are fulfilled, a report, in the form of an approval letter, is
generated and sent to the user, confirming the approval of the loan. If the loan is
rejected for some reason, then a report showing the reason for the rejection is
generated and displayed.

FIGURE 19 Business Use Case Flow Diagram

Implementation With JBI
The above business case can be implemented according to SOA principles and the
JBI specification. The Service Assembly (composite application), which consists of all
the Service Units, must be deployed. FIGURE 20 describes such a scenario. The
description of all the activities that are performed at each step follows the figure.
 Putting It All Together: The Loan Processing Composite Application 41

FIGURE 20 Sequence of Steps Describing Message Flow in the Loan Processing
Application

Step 1 – The user submits the information that is required for obtaining a loan. The
information can be supplied though a web services client or an application client.
For this scenario, we assume a web client. The user fills out the form (see
FIGURE 21), from which information such as name, age, salary, e-mail address, and
so on, is collected. When the form is submitted, a request is made to the appropriate
URL.

Step 2 – The HTTP/SOAP BC provides a consumer endpoint for the URL. The
HTTP/SOAP BC can process this request because the WSDL that corresponds to this
service (http://localhost:22000/loanRequestor) has already been deployed in
the HTTP/SOAP BC, and the port corresponding to this service is the correct port.
Any other information that the BC requires (security-partner link-related
information) is supplied along with the Service Unit.

When the HTTP/SOAP BC receives this request, it unmarshals the SOAP message,
removes the SOAP headers, constructs a normalized message (based on the JBI
specification), and addresses it to the component that provides this service in the JBI
system. This message is then sent on the delivery channel. The normalized message
router (NMR) routes the message to the BPEL service engine with service name
http://localhost/loanRequestorBpel/loanRequestor and port
loanRequestorService.
42 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

FIGURE 21 Loan Application Request Form

Step 3 – The BPEL SE receives a request on its delivery channel. The service
information and the BPEL script that must be executed for this request is obtained
from the deployed Service Unit. The BPEL SE starts executing the BPEL script
corresponding to this service and port. It also validates the message received with
the message type described in the WSDL.

Step 4 – The first activity in the BPEL script happens to be an invocation of another
service. The BPEL SE constructs a normalized message and updates the message
content with the loan request message and the message headers, with the service
name urn:LoanProcessorEJB/wsdl}LoanProcessorEJB and port
LoanProcessorEJBSEIPort. This message, too, is sent on the delivery channel. The
BPEL service engine has no knowledge of the provider of the service other than the
service definition in the WSDL file.

Steps 5 to 10 – Because the endpoint is an internal endpoint (that is, provided by
some engine in the JBI runtime system) and has been activated by the Java EE SE,
the message is delivered to the delivery channel of the Java EE SE. A deployment to
the Java EE SE is not a Service Unit but could be any application server component,
such as an EJB component or a servlet. A special provision in Sun Java System
Application Server specifies that any EJB exposed as a Web Service automatically has
its service endpoints registered with the JBI normalized message router (NMR).

Similarly, a provision in the web.xml deployment descriptor for the Application
Server lets you indicate whether or not a servlet is JBI enabled. If it is not JBI-
enabled, then the servlet request processing proceeds normally; if it is JBI enabled,
then any request to the servlet is trapped by the Java EE Service Engine and a
request is sent to the NMR. The Java EE SE also normalizes the request message.

In this example, Java EE SE receives a request for a service that is provided by a JBI-
enabled EJB component deployed in the application server. The SE passes the
request to the EJB component after denormalizing the request and applying the
SOAP wrappers to it (because the EJB component is a web service implementation, it
 Putting It All Together: The Loan Processing Composite Application 43

expects a SOAP message). The response returned by this web service is likewise
stripped of SOAP wrappers and normalized into a JBI normalized message. The
resulting message is returned as a response to the consumer (the BPEL SE). The web
service is the LoanProcessor web service, which approves or rejects loan requests.

Steps 11, 12 – The BPEL SE receives the response from the provider and validates the
response to determine whether or not it is a fault. If the response is valid, the BPEL
SE proceeds with the execution of the next service; otherwise, it executes the fault
handlers. The response is merely an approved or rejected status message from the
LoanProcessor corresponding to the service name
{urn:LoanProcessorEJB/wsdl}LoanProcessorEJB and port
LoanProcessorEJBSEIPort. The BPEL SE sends the reply back through the NMR to
the consumer.

Steps 13, 14 – The HTTP/SOAP BC that initiated the Loan request receives this
response. It denormalizes the response message and creates a SOAP response (see
FIGURE 22) to be sent to the web-service client that invoked it.

FIGURE 22 Loan Request Response Presented to User

The following sections of this document provide programming details to give you a
deeper understanding of the example application.
44 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

Web Services Business Process
Execution Language (WS-BPEL)

The Web Services Business Process Execution Language (WS-BPEL) is used to create
processes capable of invoking other processes, all of which correspond to a business
workflow. Coordinating the interaction of these processes is known as orchestration.
WS-BPEL enables orchestration by providing standardized integration logic and
process automation between web services.

Using constructs derived from the Web Service Definition Language (WSDL), WS-
BPEL describes inbound and outbound process interfaces so that a process can easily
be integrated into other processes or applications. These interface descriptions
enable consumers of a process to inspect and invoke a WS-BPEL process just as they
would any other web service.

BPEL – The Language in a Nutshell
BPEL is a rigorous language that extends web services for interacting processes.
BPEL business processes build stateful, conversational orchestrations from web
services. BPEL processes are expressed in XML notation.

To design a composite application using WS-BPEL, you must become acquainted
with the BPEL language. While this article cannot describe all the details of the BPEL
language and its capabilities, it introduces features of the language now as
background for understanding the example program presented later.

Users of the NetBeans™ Enterprise Pack 5.5 can use the BPEL Visual Designer and
the many tools that come with it to create their orchestrations and therefore will not
have to create BPEL XML code by hand. However, knowledge of the language
elements is still useful since the BPEL Visual Designer references these constructs
and language elements in its graphical widgets.
 Web Services Business Process Execution Language (WS-BPEL) 45

FIGURE 23 shows a typical BPEL process definition skeleton.

FIGURE 23 BPEL Process Definition Skeleton

The process Definition
The root element of any BPEL process is the <process/> definition. Each process
definition has a name attribute and definition-related namespaces, as shown in the
following example.
46 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

The import Element
The <import/> element, illustrated in the following example, indicates a
dependency on external XML Schema or WSDL definitions. Each <import/> element
contains three mandatory attributes:

� The namespace attribute specifies the URI namespace of the imported definitions.

� The location attribute contains a URI giving the location of a document that
contains relevant definitions in the namespace specified. The document located at
the URI must contain definitions belonging to the same namespace as indicated
by the namespace attribute.

� The importType attribute identifies the type of document being imported by
providing the URI of the encoding language. The value must be set to
"http:// www.w3.org/2001/XMLSchema" when XML Schema 1.0 documents are
imported, and to "http://schemas.xmlsoap.org/wsdl/" when WSDL 1.1
documents are imported.

<?xml version="1.0" encoding="utf-8" ?>
<process name="loanRequestorBpel"
 targetNamespace="http://www.seebeyond.com/eInsight/loanRequestorBpel"
 xmlns:tns="http://www.seebeyond.com/eInsight/loanRequestorBpel"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2004/03/business-process/"
 xmlns:ns0="http://localhost/loanRequestorBpel/loanRequestor"
 xmlns:ns1="http://localhost/loanRequestorBpel/
 LoanProcessorEJBWrapper"
 xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/"
 xmlns:ns3="urn:LoanProcessorEJB/wsdl"
 xmlns:ns2="http://www.w3.org/2001/XMLSchema">
 <import ...>
 </import>
 <partnerLinks>
 ...
 </partnerLinks>
 <variables>
 ...
 </variables>
 <sequence>
 ...
 </sequence>
 ...
</process>
 Web Services Business Process Execution Language (WS-BPEL) 47

The partnerLinkType and role Definitions in WSDL Files

The <partnerLinkType/> element is embedded directly within the WSDL file of
every partner process and service process involved in a BPEL orchestration.

<partnerLinkType/> elements defined in the partner’s WSDL file identify the
WSDL portType (interface) element referenced by the partnerLink in the service
process’s BPEL process definition.

FIGURE 24 partnerLinkType Behavior

The <partnerLinkType/> element contains one <role/> element for each role
(service provider or service consumer) the service process can play, as defined by its
partnerLink element—myRole (indicating a service provider) and partnerRole
(indicating a service consumer) attributes—in the service process’s BPEL process
definition. Therefore, a partnerLinkType can have either one or two <role/> child
elements. The following example shows one <role/> child element.

<import namespace="http://localhost/loanRequestorBpel/loanRequestor"
 location="loanRequestor.wsdl"
 importType="http://schemas.xmlsoap.org/wsdl/">
</import>
<import namespace="http://localhost/loanRequestorBpel/
 LoanProcessorEJBWrapper"

 location="LoanProcessorEJBWrapper.wsdl"
 importType="http://schemas.xmlsoap.org/wsdl/">
</import>
48 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

In situations when a service process has the same relationship with multiple partner
processes, the service process’s BPEL partnerLink elements can reference the same
partnerLinkType.

The partnerLinks and partnerLink Definitions
The <partnerLink/> definition defines the portType (interface) of the partner
process that will participate in BPEL orchestrations of the business process being
defined. These partner processes can act as clients to the service process being
defined or can be invoked by the service process.

The <partnerLink/> element encodes communication exchange information
between the service process and its partner processes. The role of the service process
will vary according to the nature of communication with its partner process.

For the example in FIGURE 25, when the LoanRequestor service process invokes a
LoanProcessorEJB partner process, it may act in a LoanRequestor role and the
LoanProcessorEJB partner process may act in a LoanProcessorEJB role.

<definitions name="LoanProcessorEJBWrapper"
targetNamespace="http://localhost/loanRequestorBpel/
 LoanProcessorEJBWrapper"
 xmlns:tns="http://localhost/loanRequestorBpel/
 LoanProcessorEJBWrapper"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:plink="http://schemas.xmlsoap.org/ws/2004/03/partner-link/"
 ...
 >
...
 <plink:partnerLinkType name="loanProcessorEjbPartner">
 <plink:role name="loanProcessorEJB"
 portType="ns:LoanProcessorEJBSEI">
 </plink:role>
 </plink:partnerLinkType>
...
</definitions>
 Web Services Business Process Execution Language (WS-BPEL) 49

FIGURE 25 partnerLinkType in Loan Processor Example

The <partnerLink/> element contains the myRole and partnerRole attributes that
establish the roles for the service process and its partner process, respectively, as
illustrated in the following code example.

The myRole attribute is used when the service process acts as the service provider
and is being invoked by a service consumer partner process client. Similarly, the
partnerRole attribute identifies the service provider partner process that the service
process is invoking when acting in a service consumer client role.

The variables and variable Definitions
The <variable/> element is used by the service process to store state information
related to immediate workflow logic. Entire XML messages can be stored in a
variable and retrieved later by a process. Only predefined XSD schema type data can
be stored into these variables.

As defined by the following attributes, several data types can be stored in a process
variable:

� The messageType attribute allows the variable to contain an entire WSDL-defined
message, as illustrated in the following code example.

<partnerLinks>
 <partnerLink name="bpelImplemented"
 partnerLinkType="ns0:loanRequestorPartnerLinkType"
 myRole="loanRequestor"/>
 <partnerLink name="ejbInvoked"
 partnerLinkType="ns1:loanProcessorEjbPartner"
 partnerRole="loanProcessorEJB"/>
</partnerLinks>
50 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

� The element attribute allows a variable to contain an XSD element.

� The type attribute allows a variable to contain any XSD simpleType.

In the following example, variables with the messageType attribute are defined for
each of the input and output messages handled by the process definition. The value
of this attribute is the message name from the partner process definition.

Structured Activity: The sequence Element
Structured activities combine primitive activities into more complex processes. The
<sequence/> element defines an ordered sequence of activities so that they are
executed in the order in which they are listed, as illustrated in the following
example. <sequence/> elements can be nested, so sequences can be defined within
sequences.

<variables>
 <variable name="requestLoan_Input"
 messageType="ns0:requestLoanMessage">
 </variable>
 <variable name="requestLoan_Output"
 messageType="ns0:requestLoanResponseMessage">
 </variable>
 <variable name="processApplication_Input"
 messageType="ns3:LoanProcessorEJBSEI_processApplication">
 </variable>
 <variable name="processApplication_Output"
 messageType="ns3:LoanProcessorEJBSEI_processApplicationResponse">
 </variable>
</variables>

<sequence>
 <receive>
 ...
 </receive>
 <assign>
 ...
 </assign>
 <invoke>
 ...
 </invoke>
 <assign>
 ...
 Web Services Business Process Execution Language (WS-BPEL) 51

Web Service Activity: The receive Element
Web service activities are defined by BPEL to create WebService compositions. The
<receive/> element defines the information expected by a service process acting as
a service provider waiting to receive a request from an external client partner
process acting as a service consumer.

FIGURE 26 Receive Task

The attributes that are required for defining a receive task are as follows:

� partnerLink attribute – This attribute value points to the client partner process
(the service consumer).

� portType attribute – This attribute value contains the service process’s (service
provider) port type (or interface) that will be waiting to receive the service
request from the client partner service consumer.

� operation attribute – This attribute value contains the service process’s operation
that will be receiving the client request.

� variable attribute -This attribute value contains the process definition variable
that will store the incoming request message.

� createInstance attribute – This attribute value is set to "yes" if, on receiving a
client request, a new service process instance must be created and launched. If
this attribute value is set to "no", a new service process instance is not created
when a client request is received.

 </assign>
 <reply>
 ...
 </reply>
</sequence>
52 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

The <receive/> element is also used to receive callback messages during an
asynchronous message exchange.

Basic Activity: The assign, copy, from, and to
Elements
Basic activities are defined by BPEL to create WebService compositions. The
<assign/>, <copy/>, <from/>, and <to/> elements let you copy data from one
process variable to the other throughout the service process.

<receive partnerLink="bpelImplemented"
 portType="ns0:IRequestLoan"
 operation="requestLoan"
 variable="requestLoan_Input"
 createInstance="yes">
</receive>

<assign>
 <copy>
 <from>$requestLoan_Input.requestPart/aSSN</from>
 <to>$processApplication_Input.parameters/String_1</to>
 </copy>
 <copy>
 <from>$requestLoan_Input.requestPart/aName</from>
 <to>$processApplication_Input.parameters/String_2</to>
 </copy>
 <copy>
 <from>$requestLoan_Input.requestPart/aAddress</from>
 <to>$processApplication_Input.parameters/String_3</to>
 </copy>
 <copy>
 <from>$requestLoan_Input.requestPart/aEmailAddress</from>
 <to>$processApplication_Input.parameters/String_4</to>
 </copy>
 <copy>
 <from>$requestLoan_Input.requestPart/aAge</from>
 <to>$processApplication_Input.parameters/int_5</to>
 </copy>
 <copy>
 <from>$requestLoan_Input.requestPart/aGender</from>
 <to>$processApplication_Input.parameters/String_6</to>
 Web Services Business Process Execution Language (WS-BPEL) 53

Web Service Activity: The invoke Element
Basic activities are defined by BPEL to create WebService compositions. The
<invoke/> element allows the service process to invoke a one-way or a request-
response operation on a port type (or interface) offered by a partner process.

FIGURE 27 Invoke Task

The five common attributes of the <invoke/> element are as follows:

� partnerLink attribute – This attribute value identifies the partner process
through this link.

� portType attribute – This attribute value identifies the port type (or interface) of
the partner process.

� operation attribute – The attribute value identifies the operation of the partner
process to which the invocation request has to be sent.

� inputVariable attribute – This attribute value indicates the input message that is
used to communicate with the partner process service operation. This attribute
represents a variable element in the process definition with a messageType
attribute.

� outputVariable attribute – This attribute is used when a request-response
message exchange pattern is being used to communicate with the process partner.
The return value is stored in a separate variable element.

 </copy>
 <copy>
 <from>$requestLoan_Input.requestPart/aAnnualSalary</from>
 <to>$processApplication_Input.parameters/double_7</to>
 </copy>
 <copy>
 <from>$requestLoan_Input.requestPart/amountRequested</from>
 <to>$processApplication_Input.parameters/double_8</to>
 </copy>
</assign>
54 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

The following example illustrates the use of the <invoke/> element.

Web Service Activity: The reply Element
BPEL defines basic activities needed to create WebService compositions. When a
synchronous message exchange is being created, each <receive/> element has a
corresponding <reply/> element. The <reply/> element allows the service process
to send a message in reply to a received message from a process partner client
service because the element is associated with the same partnerLink element as its
corresponding <receive/> element.

FIGURE 28 Replying to Received Message

The <reply/> element has almost the same set of attributes as the <receive/>
element:

� partnerLink attribute – This attribute is the same partnerLink attribute present
in the corresponding <receive/> element.

� portType attribute – This attribute is the same portType attribute present in the
corresponding <receive/> element.

� operation attribute – This attribute is the same operation attribute present in
the corresponding <receive/> element.

� variable attribute – This attribute is the service process variable attribute that
is defined in the process definition to hold the message that is returned to the
partner process service.

<invoke partnerLink="ejbInvoked"
 portType="ns3:LoanProcessorEJBSEI"
 operation="processApplication"
 inputVariable="processApplication_Input"
 outputVariable="processApplication_Output">
</invoke>
 Web Services Business Process Execution Language (WS-BPEL) 55

� messageExchange attribute – This optional attribute allows the <reply/> element
to be explicitly associated with the message activity capable of receiving a
message such as the <receive/> element.

The following example illustrates the use of the reply element.

Basic Activity: The wait Element
The <wait/> element makes the service process wait for a period of time. It is used
to introduce an intentional delay within the service process. Its values can set either
a time or a specified date.

Basic Activity: The throw Element
The <throw/> element lets you explicitly trigger a fault in response to a specified
condition to indicate that an error has occurred in the service process execution.

Basic Activity: The exit Element
The <exit/> element terminates the entire service process orchestration instance by
destroying it.

Basic Activity: The empty Element
The <empty/> element lets you specify that no activity should occur for a specified
condition.

<reply partnerLink="bpelImplemented"
 portType="ns0:IRequestLoan"
 operation="requestLoan"
 variable="requestLoan_Output">
</reply>
56 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

Structured Activity: The while Element
The <while/> element lets you define a loop. You can define a group of activities
that need to be repeated while a condition is satisfied. The element contains a
condition attribute that, as long as it evaluates to "true", will continue to execute
the list of activities defined within the <while/> element.

Structured Activity: The if Element
The <if/>, <elseif/>, and <else/> elements lets you select an execution branch
based on conditional logic.

Structured Activity: The pick Element
The <pick/> element blocks and waits for a suitable message to arrive or for a
timeout alarm to go off. When either of these triggers occurs, the associated activity
is executed and the <pick/> completes. The element lets you add an <onMessage/>
child element and an <onAlarm/> child element. Use the <pick/> element to
respond to external events for which service process execution is suspended.

Structured Activity: The flow Element
The <flow/> element enables parallel execution of a collection of sequences. It lets
you define multiple activities that can occur concurrently. The element finishes after
all branches have finished executing. The child <link/> element present in the
<flow/> element lets you define dependencies between activities.

Structured Activity: The compensationHandler
Element
The <compensationHandler/> element lets you group a list of activities that define
a compensation process that can be executed when certain conditions that require a
compensation occur.
 Web Services Business Process Execution Language (WS-BPEL) 57

Structured Activity: The correlationSets Element
The <correlationSets/> element implements correlation, used to associate
messages with process instances. A message can belong to multiple correlation sets.
Message properties can be defined in WSDL files.

Structured Activity: The eventHandlers Element
The <eventHandlers/> element lets you enable process instances that can respond
to events during execution of the process logic. You can define <onMessage/> and
<onAlarm/> child elements that trigger process execution upon the arrival of specific
types of messages, either after a predefined period of time or at a specified date and
time.

Structured Activity: The scope Element
The <scope/> element lets you subdivide regions of logic within your process
definition into scopes. You can then define variables, faultHandlers,
correlationSets, compensationHandler, and eventHandlers elements that are
local to the scope.
58 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

Project OpenESB and JBI Support

JSR 208 defines a JBI implementation in terms of a single Java Virtual Machine
(JVM), where components, service assemblies, and runtime support (for example,
management) are coresident in a JVM implementation. For many enterprise
environments, the ability to distribute components and service assemblies across
process, machine, and network boundaries is a vital requirement. While this
requirement can be met by deploying multiple, independent instances of JBI and
linking them through standard communication protocols, this approach has two
major drawbacks:

� There is no single point of administration for the entire system. Individual
components and service assemblies must be managed by each JBI instance’s local
management interface.

� Each operation in the system (deploy, install, start, stop, and so on) requires
knowledge of the system topology. For example, deploying a service assembly
requires knowledge of the physical location of targeted components in the system.

Project OpenESB addresses these problems by introducing a Java Open Enterprise
Service Bus built with JBI technology. In essence, OpenESB enables a set of
distributed JBI instances to communicate as a single logical entity that can be
managed through a centralized administrative interface.

Centralized Management
OpenESB includes a Centralized Administration Server (CAS), which serves as a
single point of administration for the entire system. The CAS provides an interface
to all standard JBI operations, including instance management facilities such as
adding and removing an instance from the ESB. Because OpenESB supports both
heterogeneous and homogeneous system topologies, an administrator can partition
components and service deployments according to environment-specific
requirements—performance, security, or licensing, for example.
 Project OpenESB and JBI Support 59

http://www.jcp.org/en/jsr/detail?id=208
https://open-esb.dev.java.net/

Location Transparency
When using OpenESB, the ESB administrator is not burdened with the responsibility
of tracking the physical location of each deployment and installation across every JBI
instance in the system. The CAS presents an interface to the entire ESB as a single JBI
system. With this approach, starting a component is a system-level operation, which
is translated by the CAS into instance-specific operations that are executed behind
the scenes.

Location transparency also simplifies the provisioning of components and service
assemblies. When a component activates a service endpoint in one instance of the
ESB, that activation is visible to all instances. Further, ESB supports the concept of a
distributed message exchange, whereby two components in separate JBI instances
can communicate with each other as if they were colocated in the same JBI instance.
60 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

Conclusion

The advantage of the implementation described in the example application is that it
offers location transparency and segregates the logic in the business process. These
features let you replace or upgrade individual components in the composite
application without affecting other components or the process as a whole. Location
transparency gives you the flexibility to choose alternative message paths by adding,
removing, or modifying the Service Units deployed on the components.

References

OpenESB

� OpenESB home page on java.net (https://open-esb.dev.java.net/)

Service-Oriented Architecture

� SOA Offerings from Sun Microsystems
(http://www.sun.com/products/soa/offerings.jsp)

� Developing a Service Engine Component
(http://java.sun.com/integration/reference/techart/jbi/)
 Conclusion 61

http://www.sun.com/products/soa/offerings.jsp
https://open-esb.dev.java.net/
http://java.sun.com/integration/reference/techart/jbi/
http://www.sun.com/products/soa/offerings.jsp
https://open-esb.dev.java.net/
http://java.sun.com/integration/reference/techart/jbi/

Resources

Programming Tools

� Download the Java EE 5 Tools Bundle (http://java.sun.com/javaee/downloads)

Example Application

� Download the files related to the example Java NetBeans™ Enterprise Pack 5.5
project (http://java.sun.com/developer/technicalArticles/WebServices/soa3/
loanProcessing.zip)

Demonstration Videos for Creating Example

Application

You will need the Flash Player plugin to view these videos.

� Creating the LoanProcessor EJB WebServices project
(http://java.sun.com/developer/technicalArticles/WebServices/soa3/
loanprocessorejb.htm)

� Creating a new BPEL Module project and packaging the required WSDLs and
XSDs (http://java.sun.com/developer/technicalArticles/WebServices/soa3/
loanprocessing.htm)

� Creating the BPEL-JBI composite application project and deploying to the JBI
meta-container
(http://java.sun.com/developer/technicalArticles/WebServices/soa3/
loanprocessingBpelJBI.htm)

� Testing, debugging, and switching between the BPEL and JPDA debuggers for the
deployed JBI composite application project
(http://java.sun.com/developer/technicalArticles/WebServices/soa3/
loanprocessingJBITest.htm)
62 Implementing Service-Oriented Architectures (SOA) with the Java EE 5 SDK • May 2006

http://java.sun.com/javaee/downloads
http://java.sun.com/javaee/downloads
http://java.sun.com/developer/technicalArticles/WebServices/soa3/loanProcessing.zip
http://java.sun.com/developer/technicalArticles/WebServices/soa3/loanProcessing.zip
http://java.sun.com/developer/technicalArticles/WebServices/soa3/loanprocessorejb.htm
http://java.sun.com/developer/technicalArticles/WebServices/soa3/loanprocessorejb.htm
http://java.sun.com/developer/technicalArticles/WebServices/soa3/loanprocessingBpelJBI.htm
http://java.sun.com/developer/technicalArticles/WebServices/soa3/loanprocessingBpelJBI.htm
http://java.sun.com/developer/technicalArticles/WebServices/soa3/loanprocessingJBITest.htm
http://java.sun.com/developer/technicalArticles/WebServices/soa3/loanprocessingJBITest.htm
http://java.sun.com/developer/technicalArticles/WebServices/soa3/loanprocessing.htm
http://java.sun.com/developer/technicalArticles/WebServices/soa3/loanprocessing.htm
http://www.adobe.com/go/getflashplayer
http://java.sun.com/developer/technicalArticles/WebServices/soa3/loanProcessing.zip
http://java.sun.com/developer/technicalArticles/WebServices/soa3/loanprocessorejb.htm
http://java.sun.com/developer/technicalArticles/WebServices/soa3/loanprocessing.htm
http://java.sun.com/developer/technicalArticles/WebServices/soa3/loanprocessingBpelJBI.htm
http://java.sun.com/developer/technicalArticles/WebServices/soa3/loanprocessingJBITest.htm

Index

A
application server 32

B
BC 14, 16

developing 29
HTTP/SOAP 36

Binding Component 14, 16
developing 29
HTTP/SOAP 36

BPEL 45
assign element 53
basic activities 53, 56
compensationHandler element 57
copy element 53
correlationSets element 58
empty element 56
eventHandlers element 58
exit element 56
flow element 57
from element 53
if element 57
import element 47
invoke element 54

inputVariable attribute 54
operation attribute 54
outputVariable attribute 54
partnerLink attribute 54
portType attribute 54

language summary 45
partnerLink definition 49
partnerLinks definition 49
partnerLinkType element 48
pick element 57

process definition 46
skeleton 46

receive element 52
reply element 55

messageExchange attribute 56
operation attribute 55
portType attribute 55
variable attribute 55

role element 48
scope element 58
sequence element 51
structured activities 51, 57
throw element 56
to element 53
variable element 50
variables element 50
wait element 56
web service activities 52, 54
while element 57

BPEL Service Engine 38
deployment mode 39
runtime mode 39
static mode 39

C
composite application, example 40

D
delivery channel 18

E
EJB service implementation bean example 9
ESB

location transparency in 60
example application

implementation with JBI 41
use case 40
Sun Microsystems, Inc.
www.sun.com

H
HTTP/SOAP Binding Component 36

I
In Optional-Out message exchange pattern 21
In-Only message exchange pattern 20
In-Out message exchange pattern 21

J
Java API for XML Web Services 7, 8
Java Business Integration 14
Java EE

platform 7
web service architecture 8
web service, client view 11

Java Management eXtensions 28
JAX-WS 7, 8
JBI 14

composite application Service Assembly
project 25

developing SE or BC 29
management 28
message exchange pattern 19
message exchange routing 22
meta-container 15
Runtime Environment 15

jbi.xml file 23, 24, 25
JMS 16
JMX 28
JSR 109 specification 7
JSR 208 specification 14, 32

L
loan processing example application 40

M
message exchange pattern 19

In Optional-Out 21

In-Only 20
In-Out 21
Robust In-Only 20

message routing
exchange 22
Service Unit and Service Assembly 23, 24

N
NMR 14, 17
normalized message 16, 17
normalized message router 14, 17

O
OpenESB 59

centralized managment 59
OpenESB, location transparency in 60

R
references 61
resources 62
Robust In-Only message exchange pattern 20

S
SAAJ 1.2 37
SE 14, 16, 38

as service consumer 33
as service provider 32
creating and packaging 29
developing 29

Service Assembly 22
creation and packaging 29
deployment 30

Service Engine 14, 16, 32, 38
as service consumer 33
as service provider 32
creating and packaging 29
developing 29

service invocation pattern 19
Sun Microsystems, Inc.
www.sun.com

Service Unit 15
creating and packaging 29
deployed for BC 26
deployment for BC 25

Service Unit deployment descriptor 24
SMTP 16
SOA, introduction to 6
SOAP 16

with Attachments API for Java 37

U
use case, example application 40

W
web service architecture 8
Web Service Definition Language 9
WS-BPEL 45
WS-BPEL JBI Service Engine 38
WSDL 9

2.0 Abstract Message Model 18
WSDL file

partnerLinkType element 48
role element 48
Sun Microsystems, Inc.
www.sun.com

	Service-Oriented Architectures and the�Java�EE�5�SDK
	Java EE Platform and Web Services
	JAX-WS 2.0
	Java EE Web Service Architecture
	EJB Service Implementation Bean Example

	Client View of the Java EE Web Service

	Java Business Integration (JBI) – JSR�208
	The JBI Meta-Container
	Service Engines
	Binding Components
	Normalized Message Router
	JBI Normalized Message
	Delivery Channel
	JBI Message Exchange Patterns
	Service Invocation Patterns
	In-Only Message Exchange Pattern
	Robust In-Only Message Exchange Pattern
	In-Out Message Exchange Pattern
	In Optional-Out Message Exchange Pattern

	JBI Message Exchange Routing
	Information in the Service Units and Service Assemblies Routing
	Service Unit Deployment for a Service Engine
	JBI Composite Application Service Assembly
	Service Unit Deployments Intended for a Binding Component
	Sample Descriptors

	JBI Management, Monitoring, and Administration
	Development of a JBI Component (Service Engine or Binding Component)
	Service Unit and Service Assembly Creation and Packaging
	Service Assembly Deployment to the JBI Environment

	Java EE Service Engine
	Role of Java EE Service Engine As a Service Provider
	Role of Java EE Service Engine As a Service Consumer

	HTTP/SOAP JBI Binding Component
	WS-BPEL JBI Service Engine
	Putting It All Together: The Loan Processing Composite Application
	Business Use Case
	Implementation With JBI

	Web Services Business Process Execution Language (WS-BPEL)
	BPEL – The Language in a Nutshell
	The process Definition
	The import Element
	The partnerLinkType and role Definitions in WSDL Files

	The partnerLinks and partnerLink Definitions
	The variables and variable Definitions
	Structured Activity: The sequence Element
	Web Service Activity: The receive Element
	Basic Activity: The assign, copy, from, and to Elements
	Web Service Activity: The invoke Element
	Web Service Activity: The reply Element
	Basic Activity: The wait Element
	Basic Activity: The throw Element
	Basic Activity: The exit Element
	Basic Activity: The empty Element
	Structured Activity: The while Element
	Structured Activity: The if Element
	Structured Activity: The pick Element
	Structured Activity: The flow Element
	Structured Activity: The compensationHandler Element
	Structured Activity: The correlationSets Element
	Structured Activity: The eventHandlers Element
	Structured Activity: The scope Element

	Project OpenESB and JBI Support
	Centralized Management
	Location Transparency

	Conclusion
	References
	OpenESB
	Service-Oriented Architecture

	Resources
	Programming Tools
	Example Application
	Demonstration Videos for Creating Example Application

