
JDJ.SYS-CON.com12 March 2007

ava is an outstanding language for building components, ser-
vices, and many applications that are vendor and platform
neutral. The vast adoption of Java technology by the industry
in the past decade is a testament to the power of Java. Devel-
opment of new applications, services, and components using

Java is not going away, but many organizations have progressively
moved to the next phase in maturing their IT Infrastructure.
This phase is driven by many factors including how businesses
operate today, having to constantly adjust to market trends, and
that IT has moved from being a support organization to being the
backbone of business and, hence, needs to keep pace with the
organization. Continuous and faster alignment with changing
business needs, time-to-market, and cost are the factors that
determine success in this phase.
 There are some technologies that are starting to play a critical
role in this phase, for example, service-oriented architecture
(SOA) is a key enabler. Java EE technology is a natural service-
enabler of existing applications, thereby forming the foundation
of SOA. Service-enabled applications create the opportunity to
compose functions from disparate and cross-functional applica-
tions to model business processes that transcend application and
enterprise boundaries. Web Services Business Process Execution
Language (WS-BPEL) provides a faster way to compose and
orchestrate services by reuse. Java and WS-BPEL complement
each other perfectly and provide a solid foundation for integrat-
ing services and delivering composite applications.
 This article will briefl y explain what these technologies are and
how they can work together to improve developer productivity
and business agility.

The Technologies – Java, WS-BPEL, and SOA
 There are no globally accepted defi nitions for the technologies
that this article will explore. So let’s clarify them now as a common
understanding is needed before getting into the details.
 Service-oriented architecture is a technical pattern for imple-
menting cohesive and loosely coupled business and technical
functions with well-defi ned interfaces. Such services are con-
sumed through the details specifi ed in the interface and without
any knowledge about the implementation.
 While the SOA-based infrastructure model shown in Figure 1
has a few, but well-defi ned, layers of services, in reality there may
be many more layers, as the services are reused and composed
to create coarser-grained services. As illustrated in the diagram,

services can consume each other to provide layers of services and
such a model can be implemented using any language including
Java. The service is not technology-dependent as long as it can be
consumed through the well-defi ned interface. Java EE 5 is a set of
coordinated technologies that enable solutions for developing,
deploying, and managing server-centric applications. WS-BPEL is
an XML-based execution language that can be used to compose
the coarse-grained services into broader services or complete
applications.

Tough Decisions
 Technology without the right set of tools often does more dam-
age than good. Identifying the right set of tools for a technology is
as important as choosing the technology.
 The science of delivering composite applications becomes
more of an art when architects try to understand when to switch
from Java to WS-BPEL. This decision often determines the agility
of the composite application.

The Right Set of Tools
 Sun Microsystems provides a bundle of tools and servers that
we will be using for this article to build our composite application,
specifi cally the Java EE 5 SDK Update 2 Tools Bundle. This can be

Kevin Schmidt is the director of

product management for SOA

and Business Integration Soft-

ware at Sun Microsystems, Inc.

He has 17 years of experience

in the software industry in roles

that include product manage-

ment, professional services,

pre-sales, and development.

Most recently he has focused

on composite applications using

Java, Web services, SOA, BPM,

and related technologies.

kevin.schmidt@sun.com

by Kevin Schmidt, Prabhu Balashanmugam,
and Gopalan Raj

J

Deliver Composite Applications
with Java, WS-BPEL & SOA

Supporting the complete lifecycle

Feature

Figure 1 SOA-based infrastructure

13March 2007JDJ.SYS-CON.com

Deliver Composite Applications
with Java, WS-BPEL & SOA

found at http://java.sun.com/javaee/downloads/ and includes:
• Java EE 5 Application Server
• NetBeans 5.5 with NetBeans Enterprise Pack 5.5
• Java Business Integration (JBI) runtime and WS-BPEL Service

Engine

 This bundle provides the integrated tooling and runtime envi-
ronments needed to build, deploy, and manage composite applica-
tions using Java and WS-BPEL. The tooling, in addition to a full Java
SE/EE development environment, includes a WS-BPEL editor and
debugger, WSDL and XSD editors, and a project system for creating
services and composing them into applications. The runtime pro-
vides the Java EE 5 application server but also the WS-BPEL engine
needed to execute the business processes created in the WS-BPEL
editor.
 In effect this bundle provides the capability to support the com-
plete life cycle to develop, deploy, and manage applications and
business processes, composing services from Java EE applications
and Web services.

Putting the Technology into Action
Use Case
 To put the technology and the tools in context, let’s take a
scenario that you must be very familiar with, a scenario in which
a new external-facing application is being developed iteratively by
reusing functions from existing Java EE applications and external
Web services.
 In the architecture depicted in Figure 2, there are three exist-
ing Java EE Applications: 1) the Performance Evaluator – provides
evaluations on the fi scal performance of existing customers; 2)
the Vehicle Information Server – evaluates market conditions and
vehicle history and serves a detailed report on the worthiness of
the vehicle; and 3) the Financial Index Server – provides the current
running rates and values that should be used to compute the loan
details.
 The new application should provide a service to receive loan
applications over the Web and respond with a decision. The loan
decision should be arrived at by applying predefi ned processing
rules on the following data: 1) applicant’s fi nancial worthiness, 2)
vehicle’s value, 3) loan amount, and 4) current policies and indices
for loans.

Design
 The new application could be completely implemented in Java
technology with just servlets, JSPs, EJBs, and POJOs. However,
WS-BPEL is a more suitable language for service composition and
business process execution. As mentioned earlier, the decision
about when to start composing services using WS-BPEL can be
tricky. The general rule is that Java can be used for extending exist-
ing services or composing fi ne-grained Java EE services to create
more services that may not yet provide a cohesive and complete
business or technical function. Should the new processing unit
implement business or technical logic, which is more than invok-
ing services and basic data transformations between invocations,
that’s an indication that it may be more suitable to implement Java.
However, when the application or composition needed is process-
centric and involves invoking services and hooking them together
with fl ow logic and simple mappings, WS-BPEL may be the best
way to implement this layer of the application.
 The new application requires the development of the following
services: 1) Applicant Evaluator – a service that aggregates an inter-
nal report if the applicant is an existing customer with an external
credit report; 2) Loan Approval Processor – a service that takes an

applicant’s fi scal performance, vehicle report, and current indicators
and comes up with a decision; and 3) the Vehicle Loan Application
Process that will be exposed to the external world. This process will
receive an incoming credit application, invoke the Applicant Evalua-
tor Service, Vehicle Information Service, and Financial Index Service
in that order and pass the results from all these services to the Loan
Approval Processor service and return the decision to the caller.
 The Applicant Evaluator service will be implemented as a state-
less session bean annotated to be exposed as a Web service. This
service will invoke an external Web service to get a credit report
and also invoke another stateless session bean – Performance
Evaluator – to get an internal credit report, if one is available.
 The Vehicle Information Server and Financial Index Server State-
less Session Bean functions will be exposed as Web services. The
Loan Approval Processor service will be implemented as a stateless
session bean and annotated to be exposed as a Web service.
 The Vehicle Loan Application Process will be implemented as
a business process that invokes the Applicant Evaluator, Vehicle
Information Server, Financial Index Server, and Loan Approval
Processor services in that order (see Figure 3).

Implementation
 Java EE technology and the tools provided in NetBeans allow
users to adopt bottom-up or top-down approaches or a combina-

Figure 2 Existing applications, functions, and technology

Figure 3 Proposed applications, functions, and technology

Prabhu Balashanmugam

is a product manager for

SOA and Business Integra-

tion Software at Sun

Microsystems, Inc. He

is currently responsible

for managing Business

Process Management

and Data Management

products. Prior to joining

Sun Microsystems, he

has implemented and

managed various software

solutions for companies

across the globe.

prabhu.balashanmugam@
sun.com

Figure 4 Annotated Vehicle Information Server EJB

JDJ.SYS-CON.com14 March 2007

tion of both to deliver composite applications. In this example we will
follow a bottom-up development approach. We’ll start by building
Java services, followed by invoking the services in a business process.
We’ll then compose the services in a composite application, deploy
the application on Sun Application Server 9.1, and test the composite
application.
 NetBeans Enterprise Pack 5.5 provides the necessary capability to
perform all the above tasks from within the IDE without the need to
use any other tool or editor.

The Java Services
 Java EE 5 enables functionality in an existing Java EE application to
be easily service-enabled by annotating the Java classes. The creation
of new Java EE applications that are Web-service enabled can also be
done easily using the EJB Module Creation Wizard in NetBeans. In the
first phase, the EJB Modules Vehicle Information Server and Financial
Index Server are service-enabled by adding the appropriate annota-
tions to the classes.
 In the second phase, two new services are created. The Applicant
Evaluator service is a stateless session bean also exposed as a Web
service. This service aggregates results from an external Web service,
FICOSimulator, and the Performance Evaluator stateless session
bean. The FICOSimulator Web service simulates an external Web
service that returns a credit report (see Figure 4).
 The Loan Approval Processor is another service developed as a
stateless session bean, also exposed as a Web service. This service
combines reports on the applicant’s credit worthiness, the vehicle’s

value, the loan indicators, and returns a decision based on predefined
business rules.

Composing the Services
 The Business Process Editor in NetBeans Enterprise Pack 5.5 can
be used to compose services. The Business Process Editor enables us-
ers to model business processes graphically in a visual environment
and the WS-BPEL code is automatically generated, corresponding
to the visual model. However, the user can choose to make changes
directly in the generated WS-BPEL code and the visual model is au-
tomatically synchronized to the graphical view. The services invoked
by business processes are defined as WSDLs (see Figure 5). Users
can create new WSDLs using the WSDL and XSD Editors directly in
NetBeans. However, users can also import existing WSDLs and XSDs
and edit them using the editors.
 A BPEL Project, CreditApplicationProcessorBusinessProcessor,
is created and the WSDLs and XSDs for the following services are
included: 1) Applicant Evaluator, 2) Vehicle Information Server, 3)
Financial Index Server, and 4) Loan Approval Processor Service. Once
the WSDLs are imported, Partner Link Types are created for the Port
Type that will be invoked from the business process. Please note that
the credit application process is going to be exposed as a Web service,
so, another WSDL is created, CreditProcessor.wsdl, that represents
the interface to the business process .
 Partner Link Types specify the role that will be played by the service
defined in the Port Type. For example, the Partner Link Type Custom-
erDataServicesPartners below specifies that the service will play the
role of a CustomerReportProvider when the function getCustomer-
Report is invoked.

<partnerLinkType name=”CustomerDataServicesPartner”>

<role name=”CustomerReportProvider”

portType=”getCustomerReport”/>

</role>

</partnerLinkType>

 Once Partner Links Types are created in the WSDLs for the Port-
Types, they can now be invoked from a business process. The user
can simply drag and drop the WSDL on the Business Process Editor
canvas and the Business Process Editor automatically recognizes the
available Partner Link Types and shows a wizard for configuring the
Partner Links for the business process. The wizard allows the user to
determine if the business process will be a consuming partner or a
providing partner of the service defined in the Partner Link Type.
 The WS-BPEL 2.0 specification provides various types of activities
for modeling complex and real-world business processes. The busi-
ness process can receive and reply to messages or it can just receive
messages without responding. Business processes can also receive
messages asynchronously from external sources. The key constructs
supported in the WS-BPEL specification include the ability to invoke
external services, handle exceptions, process compensation, and
error condition logic. It also allows for modeling the concurrent and
conditional execution of activities. The sample used in this article uses
only a few of the constructs, namely, Receive, Reply, Invoke, and As-
sign activities. The Invoke activity is used to consume the services and
the Assign activity is used to set and get values to the input and from
the output messages of the invoked service. The Assign activity opens
up a mapper that allows users to view all the variables in the business
process and graphically get and set values between them. The map-
per also provides data processing and transformation functions that

Feature

 Figure 5 Generated WSDL for the annotated EJB

 Figure 6 Loan application evaluation process

Gopalan Suresh Raj,

an architect at Sun

Microsystems, Inc.,

is a member of Sun’s

research and architecture

team. His expertise spans

enterprise architectures

and distributed comput-

ing. He is the author of

a number of technical

books and articles. You

can read and participate

in discussions with him

at http://blogs.sun.

com/gopalan.

gopalan.raj@sun.com

15March 2007JDJ.SYS-CON.com

can be used in conjunction with the assignments. The Receive activity is
used to receive an incoming message that creates an instance of the busi-
ness process at runtime. The reply activity is used to send a response mes-
sage back to the caller and the business process instance is then discarded.
 The user starts by creating a template business process by laying out
the activities and then configuring them one at a time. The user drags and
drops the CreditProcess WSDL and configures the business process as the
providing partner of the service. The user configures the Receive and Reply
activities to implement the PortType specified in the CreditProcess WSDL.
The user then drags and drops all the other WSDLs and configures the
business process as a consuming partner of those services. The user uses
one invoke activity per service consumed and configures the invoke activity
to link it with the appropriate Partner Link. Once configured, the business
process looks similar to Figure 6.

Create and Deploy Composite Applications
 NetBeans provides the capability to group more than one business
process available under different projects into one composite application.
This allows you to group multiple logical business processes and manage
them as one logical unit during deployment. NetBeans also provides the
necessary runtime components for deploying composite applications. The
runtime components include Java Application Server 9.1, WS-BPEL Service
Engine, and HTTP/SOAP Binding Components. The composite applica-
tions can be easily created by selecting and adding components from
different projects in the environment. NetBeans also allows users to build
and deploy composite applications with a single click.
 In the sample used in this article, the user adds the business process
module from the project CreditApplicationProcessorBusinessProcess to
the Composite Application project. The composite application is then
deployed at runtime.

Testing
 The need to write a client application just to test a newly deployed
composite application can be daunting. NetBeans eliminates this need by
providing a powerful test facility. This facility is automatically added under
the Composite Application projects. The users can create any number of test
cases to test various functions of the deployed composite application and
specify the success criteria for these tests. The input and output messages
for the test cases are also automatically generated when the user selects the
WSDL that corresponds to the business process to be tested. The user can
then customize the messages as needed in the editor shown in Figure 7. The
test facility also maintains a log of all the test results. In case of system errors,
the server and application logs can be viewed from NetBeans. This facility
allows users to immediately test just-deployed composite applications.
 The user adds a test case for the application discussed in the article. The
output message can be customized before the first run or the output mes-
sage from the first run of the test case can be used as the expected output
message.

Okay, What’s Next?
 Java EE 5 SDK provides the complete set of tools and environments
required for composing services using WS-BPEL. Invoking all services as
SOAP/HTTP Web services could bring out the obvious concern about per-
formance. WS-BPEL can be used to directly invoke Enterprise JavaBeans
to compose functionality from Java EE applications. Java EE 5 SDK can be
used to model business processes that can invoke internal and external
Web services and Enterprise JavaBeans directly, as shown in Figure 8.
 Business processes can invoke the services available in those technolo-
gies including REST Style Web services. If you are interested in finding out
what other options are available for composing services and processing

business events, check the following open source projects.
• NetBeans: http://netbeans.org/
• GlassFish: http://glassfish.dev.java.net/
• Open ESB: http://open-esb.dev.java.net/

 You can get the latest version of the products and updates on the
enhancements that are currently being worked on. You can also join and
contribute to these projects if you’re interested.
The source code for the sample projects used in this article can be down-
loaded from the online version of this article at http://jdj.sys-con.com.

Summary
 This article has discussed and shown the many capabilities in the Java
EE 5 SDK Tools Bundle for delivering composite applications using Java,
WS-BPEL, and SOA technologies.
 First, this article discussed the benefits of these two technologies and
how they can work together to enable the development of next-generation
applications.
 Second, this article demonstrated how NetBeans provides a truly
integrated development environment that allows users to extend existing
Java services, create new Java services, and compose Java services with a
business process. This article has also shown how NetBeans can be used
to iteratively develop, build, deploy, and test composite applications seam-
lessly, thereby reducing the overall turnaround time and effort required to
deliver composite applications.

Resources
• Java EE 5 SDK: http://java.sun.com/javaee/downloads/
• NetBeans IDE & Enterprise Pack: http://www.netbeans.org/
• Project Open ESB: http://open-esb.dev.java.net/
• WS-BPEL 2.0 Specification: http://www.oasis-open.org/commit-

tees/download.php/14616/wsbpel-specification-draft.htm
• Technical Blog: http://blogs.sun.con/gopalan/
• Technical Blog: http://blogs.sun.com/kevinschmidt/
• Technical Blog: http://blogs.sun.com/theaquarium/

 Figure 7 Composite Application Testing Facility

 Figure 8 WS-BPEL invoking SOAP/HTTP Web services and Enterprise JavaBeans

