
1/13/2020 Print Story

java.sys-con.com/node/36515/print 1/10

Close Window

Print Story

JavaBeans vs Enterprise JavaBeans
JavaBeans has been at the center of many new paradigms and technologies that have emerged since its
inception. Among emerging technologies, Enterprise JavaBeans has generated tremendous interest in the
business computing community. However, a common misconception is that an Enterprise JavaBean is an
extension of a "plain vanilla" JavaBean with enterprise functionality.

While both JavaBeans and Enterprise JavaBeans are software component models, their purpose is different. A
JavaBean is a general-purpose component model, whereas EJB, as the name suggests, is a component model
that is enterprise specific. Even though these models have entirely different architectures, they adhere to
certain underlying principles that generally govern a software component model. We'll use these principles
and the basic characteristics of software components to compare JavaBeans and Enterprise JavaBeans.

Goals 
The underlying theme of both JavaBeans and Enterprise JavaBeans is, as Sun puts it, "Write once, run
anywhere" (WORA). Accordingly, the primary objective of both models is to ensure portability, reusability
and interoperability of Java software components.

JB 
JavaBeans takes a low-level approach to developing reusable software components that can be used for
building different types of Java applications (applets, stand-alone apps, etc.) in any area. Whether you're
developing a simple applet or a complicated application, JavaBeans can be integrated into your system with
ease. Already a large number of vendors offer JavaBeans in a variety of fields. Some JavaBeans may be
common to multiple fields. A chart bean, for instance, can be used in scientific, engineering and business
computing applications.

EJB 
Enterprise JavaBeans takes a high-level approach to building distributed systems. It frees the application
developer to concentrate on programming only the business logic while removing the need to write all the
"plumbing" code that's required in any enterprise application. For example, the enterprise developer no longer
needs to write code that handles transactional behavior, security, connection pooling, networking or threading.
The architecture delegates this task to the server vendor.

What Are Beans? 
JB 
A JavaBean - a bean - is a reusable software component that can be visually manipulated in a builder tool.
Builder tools help you assemble applications by visually connecting beans. This doesn't mean you can't build
applications in the conventional way. If you prefer, you can hand-code applications by using beans. When you
build applications by visual connection, no coding is involved (though in semivisual tools you may have to
write some code).

Builder tools also help you customize beans visually. Once customized, you can save beans as serialized
prototypes (.ser files). When beans are part of an application, they run just like any other object. They are
instantiated differently, though, as saved beans have to be resurrected from their serialized prototypes.

EJB 
An Enterprise JavaBean - an EJB - is a reusable server-side software component. Enterprise JavaBeans
facilitate the development of distributed Java applications, providing an object-oriented transactional



1/13/2020 Print Story

java.sys-con.com/node/36515/print 2/10

environment for building distributed, multitier enterprise components. An EJB is a remote object, which needs
the services of an EJB container in which to execute.

Architecture 
JB 
The JavaBean specs define a component model to build, customize, assemble and deploy general-purpose Java
software components. In the JavaBean model, the structure and behavior of a bean is described by three basic
features: properties, methods and events.

Properties are a bean's named attributes that can be edited to customize a bean. Methods describe a bean's
behavior. Events serve two purposes:

1. Bean connection: When a bean is running in a builder tool, events enable visual connection.
2. Notification: When a bean is running in an application, events notify occurrences and pass data from

source to target.

When a bean is inserted in a visual builder tool, its exposed properties, methods and events are discovered
through the twofold process called introspection, which involves:

1. Discovery from the explicit information, which is provided by the bean provider through a bean-specific
class called BeanInfo.

2. Automatic discovery of a bean's features by using the reflection API. To facilitate this, methods in the
bean have to adhere to certain naming conventions as stated in the JavaBeans specs.

The JavaBeans 1.0 specification dealt mainly with the design-time behavior of JavaBeans. It was later
augmented by a set of three specifications code-named "Glasgow" to address some runtime issues. The
"Extensible Runtime Containment and Services Protocol" spec, which is part of Glasgow, describes the
relationship between a bean and its container at runtime. As shown in Figure 1, a bean that conforms to this
spec can be part of a nested containment structure and can utilize arbitrary services from its container.

EJB 
The Enterprise JavaBeans spec defines a server component model and specifies how to create server-side,
scalable, transactional, multiuser and secure enterprise-level components. Most important, EJBs can be
deployed on top of existing transaction processing systems including traditional transaction processing
monitors, Web, database and application servers.

As shown in Figure 2, a typical EJB architecture consists of:

An EJB server
EJB containers that run on these servers
Home objects, remote EJB objects and Enterprise beans that run in these containers
EJB clients
Other auxiliary systems like the Java Naming and Directory Interface (JNDI), the Java Transaction
Service (JTS) and Security services

Unlike JavaBeans that use introspection, the EJB container uses the EJBMetaData class to query an EJB for
its metadata at any given time.

Some of the advantages of pursuing an EJB solution are:

EJB gives developers architectural independence.
EJB is WORA for server-side components.
EJB establishes roles for application development.
EJB takes care of transaction management.
EJB provides distributed transaction support.



1/13/2020 Print Story

java.sys-con.com/node/36515/print 3/10

EJB helps create portable and scalable solutions.
EJB integrates seamlessly with CORBA.
EJB provides for vendor-specific enhancements.

Application Development Roles 
JB 
Even though the JavaBeans specification doesn't mention application development roles explicitly, we can
infer the following two roles:

1. Bean provider: develops, customizes and packages beans
2. Bean user: customizes, assembles and deploys beans

EJB 
The EJB specification assigns specific roles for project participants charged with enterprise application
development utilizing EJBs. For instance, business developers can focus on writing code that implements
business logic. Deployers of EJB can take care of installation issues in a simple and portable fashion. The
server vendor can take care of providing support for complex system services and make available an organized
framework for an EJB to execute in, without assistance from EJB developers. The EJB specification defines
six primary roles:

1. Enterprise Bean provider: develops the enterprise bean
2. Application assembler: connects the beans together and packages them
3. Deployer: deploys the packaged bean on the server
4. EJB server provider: provides a framework that can execute the EJB containers with transactional

support
5. EJB container provider: provides tools to generate the container classes that encapsulate the bean at

runtime
6. System administrator: responsible for configuration and administration of the environment on which

the EJB server executes

APIs 
Both the JavaBean and the EJB specs define APIs for bean development, execution and deployment.

JB

java.beans: The APIs from the original JavaBeans specification are implemented in the java.beans
package, which includes classes and interfaces needed for both bean providers and visual builder tools.
java.beans.beancontext: The APIs from "The Extensible Runtime Containment and Services Protocol"
spec are implemented in the java.beans.beancontext package, which includes classes and interfaces for
implementing bean context services, bean contexts and bean context children. This package is available
only in Java 2.

Both are core Java packages and are therefore available in different vendor implementations of Java.

EJB

javax.ejb: The APIs defined in the Enterprise JavaBeans specs are included in the javax.ejb package,
which is a Java standard extension. In addition to this, EJB relies on the APIs defined for the Java
Transaction API (JTA), the Java Transaction Service (JTS) and the Java Naming and Directory Interface
(JNDI).

Bean Characteristics 
Structure and Behavior
JB 
A bean, which is identified by a class, can encapsulate any functionality. While the bean class need not extend



1/13/2020 Print Story

java.sys-con.com/node/36515/print 4/10

any other class, it needs to implement the serializable or externalizable interface either directly or through
inheritance. Even though a single class identifies a bean, its functionality can be spread over many classes
through inheritance and delegation. An important restriction on the bean class is that it should have a no-
argument constructor.

Since a bean's internal structure and implementation details aren't exposed, you can't extend a bean's
functionality as is. You can, however, customize it to suit your application. To extend a bean's functionality,
you need to create a new bean by extending the existing bean class. In other words, you need to use the bean
as a class library.

As we alluded to in the Architecture section, a bean's interface to the outside world (which includes visual
builder tools, other beans and applications) is through its properties, methods and events. This interface is at
the bytecode level, which means there is no need to recompile the bean when it's assembled in an application.

For the properties, methods and events to be discovered through introspection, the related methods have to
follow certain signatures and naming conventions specified in the JavaBeans specs. In addition, a bean
provider can also furnish feature descriptors through a design-time-only class called BeanInfo, which is
specific to a bean class.

EJB 
An EJB typically encapsulates business logic that operates on data. An EJB's interface to the outside world is
through its Home and Remote interfaces. While the Home interface defines a factory to create new beans and
find existing beans, the Remote interface defines the business methods that the bean supports. Each packaged
EJB is identified by its Home interface and its Home object, its Remote interface and its EJB object, the
enterprise bean class implementation and its deployment descriptors.

In EJB there's no need for a BeanInfo class because the deployment descriptors in conjunction with the
EJBMetaData class take care of the bean description.

As mentioned earlier, an EJB isn't represented by a single class, but by the enterprise bean implementation, its
home interface and its remote interface.

A typical Home interface for a hypothetical ParentEJBean would look like this:

import javax.ejb.*;
import java.rmi.*;

public interface ParentHome extends EJBHome {
Parent create(char relationship, String name)
throws CreateException, RemoteException;
Parent findByPrimaryKey(ParentPK parentKey)
throws FinderException, RemoteException;
}

You can't inherit the Home interface because of a problem with the create() methods; that is, the child will
need to supply the same create() methods as the parent, but the methods will return different values (or remote
interfaces). Unfortunately, the Java language doesn't permit a class to have two methods that differ in signature
only by return type, so inheriting from Home interfaces is out of the question.

You can, however, inherit implementations. You could have a ParentEJBean implementation class and declare
a ChildEJBean as:

public class ChildEJBean extends ParentEJBean {

}



1/13/2020 Print Story

java.sys-con.com/node/36515/print 5/10

You can thus reuse implementation code. But with this approach you'll run into the differing-only-by-return-
type problem in the ejbCreate() methods of bean-managed persistence (see the sections on Types and
Persistence). This is because the methods will take the same arguments, but will return different primary keys.
Since create() methods in Session beans return a void, they don't encounter this problem. Container-managed
EJB's ejbCreate() methods also return a void. Even though they compile, there may be problems when the EJB
container generates code that actually returns the primary key.

Inheritance in EJB is tricky, and you're better off using containment instead.

Visibility
JB 
A bean can be visible, invisible or both. A Stopwatch bean, for instance, can have the GUI shown when it runs
on the client side and turned off if it's running on the server side. Even if a bean is invisible, it can be
customized, serialized and connected to other beans in visual builder tools.

EJB 
An EJB is a nonvisual remote object that resides only on the server side.

Types
JB 
Beans that conform to JavaBeans 1.0 specs aren't typed. The Glasgow spec, however, allows two types of
beans: Simple and Participant. A Simple bean isn't aware of its container, whereas a Participant bean actively
participates in its container. A bean that conforms only to the original JavaBeans 1.0 specs falls under the
Simple bean category. A Participant bean, however, conforms to "Extensible Runtime Containment and
Services Protocol" specs in addition to the original bean specs. A Participant bean can also discover and utilize
arbitrary services from its container.

Table 1 gives a comparison of Simple and Participant beans.

EJB 
There are two primary types of EJBs: Session and Entity beans. While an Entity bean has a unique identity
defined by its primary key class, a Session bean has no unique identity. Multiple clients can thus share an
Entity bean. A Session bean, on the other hand, is created, used and destroyed by the client that created it.
Each bean has associated with it a context object (Session context or Entity context) for its lifetime.

Table 2 compares Session and Entity beans.

There are two types of Session beans: stateful and stateless. Similarly, there are two types of Entity beans:
container-managed persistent entities and bean-managed persistent entities. (See the following section for
more details.)

Persistence
JB 
Beans are persistent. In the context of JavaBeans, beans are objects that can be saved and resurrected.
Persistence is achieved by saving a bean's internal states through serialization. As mentioned before, a
resurrected serialized prototype of a bean can be included in an application.

EJB 
Stateful Session beans may have internal states. Therefore, they need to handle activation and passivation.
Passivation is the process by which the state of a bean is serialized out into secondary storage. Activation is
the process by which it is deserialized from secondary storage. These types of EJBs can be serialized and
restored across client sessions. To serialize, a call to the bean's getHandle() method returns a handle object. To
restore, a call to the handle object's getEJBObject() method is used to return a bean reference.

Entity beans are inherently persistent beans. There are two types of persistence in Entity Beans:



1/13/2020 Print Story

java.sys-con.com/node/36515/print 6/10

Bean-managed persistence: In BMP the Entity bean is directly responsible for saving its own state. The
container doesn't need to generate any database calls. Hence, the programmer needs to hard-code
persistence into the bean through explicit JDBC or embedded SQL calls.
Container-managed persistence: In CMP the EJB container is responsible for saving the bean's state.
Since it's container managed, the implementation is independent of the data source. The container-
managed fields need to be specified in the deployment descriptor and the EJB container automatically
handles persistence.

Customization
JB 
Beans are visually customizable. You can customize a bean by editing its properties. Visual builder tools
typically present property sheets for this purpose. To generate property sheets, builder tools use introspection.
The JavaBeans spec also provides an alternative to property sheets. It specifies an interface called Customizer
to enable bean providers to build bean-specific customizers. Such a customizer can also be invoked at runtime.
(See L. Rodrigues's article, "On JavaBeans Customization," JDJ Vol. 4, issue 5, for more details.)

EJB 
EJB customization is a bit different from JavaBean customization. There's no concept of a property sheet or a
custom-written customizer for an EJB. EJBs are customized using deployment descriptors, which define the
contract between the ejb-jar provider and the EJB consumer. It captures the declarative information
(information not included directly in the EJB code) that's intended for the consumer of the ejb-jar file.

The two types of information in the deployment descriptors are the EJB's structural information and
application assembly information. In EJB 1.1 XML is used to define the deployment descriptors. EJB vendors
may provide tools that can be used by the ejb-jar provider to create deployment descriptors.

Containment and Nesting
JB 
A bean can contain another bean. The original JavaBeans 1.0 specs didn't explicitly address containment-
related issues. The Glasgow specification defines the notion of a logical bean container or BeanContext (see
Figure 1). A child bean in a container can itself be a BeanContext, thus allowing nesting of beans. In a
BeanContext child beans (Simple and Participant) can be dynamically added and removed. They can also
access arbitrary services from the container.

EJB 
EJBs always run within an EJB container. EJBs request different services from their containers and are aware
of their environment. Containers can't contain other containers and therefore there's no concept of nesting in
EJBs. Each EJB is associated with a context object (either a SessionContext or an EntityContext that provides
information about the EJB). The context object is the component's handle on the container, through which the
component can get transaction information, security information and information from the component's
deployment descriptor. The EJB component calls into the Context object through the SessionContext or
EntityContext interface.

Packaging and Deployment 
JB 
Beans are packaged in JAR files. The bean provider has to provide a manifest file with JavaBeans-related
attributes in order to identify the bean class. A JAR file can hold more than one bean. However, the JAR entry
for each bean class should have the Java-Bean attribute set to true. An example:

Name: Spreadsheet.class Java-Bean: True

Two more JavaBean-related attributes are Depends-On and Design-Time-Only. A typical bean JAR file
contains design-time and runtime bean classes, documentation, resources such as images, and sound files.



1/13/2020 Print Story

java.sys-con.com/node/36515/print 7/10

EJB 
EJBs are also packaged in JAR files. To identify the EJB class, the bean provider has to provide a manifest file
in which the jar-entry for the EJB class should have the Enterprise-JavaBean attribute set to true. An example:

Name: ~gopalan/BankAccountDeployment.ser Enterprise-Bean: True

Application Assembly
JB 
You can compose applications by visually connecting beans in a builder tool or manually by writing
connection programs. The application so developed can be an applet or a stand-alone application. Beans for an
application need not come from the same vendor because beans can be developed independent of one another.

As we alluded to before, events act as interfaces between beans. Bean connections are performed at design
time and are unidirectional. The source bean fires an event and the target bean receives it. When the
application assembler chooses a source bean for connection, the builder tool discovers through introspection
the events fired by that bean. When the application assembler chooses a target bean for the selected source
bean, the builder tool discovers the compatible methods in the target bean, again through introspection.

EJB 
EJBs are assembled into larger deployable applications. The input of application assembly is one or more ejb-
jar files produced by different providers. The output is one or more ejb-jar files that contain Enterprise beans
with their assembly instructions. As we mentioned in the Customization section, the application assembly
instructions have been inserted into the deployment descriptors. EJBs too can be developed independent of
one another. Once an EJB's home and remote interfaces are known, you can use them to create or find them
and to invoke methods on them.

Execution 
JB 
The execution phase consists of the instantiation and running of beans.

Instantiation 
Even though a bean is an object, it is instantiated differently. Instead of the new operation, beans are
instantiated using the Beans.intantiate() method. There are many flavors of this method. A bean instantiation
example:

// Obtain the Class Loader
ClassLoader loader =(Account.class).getClassLoader ();

// Instantiate the Account Bean
Account account = (Account)Beans.instantiate (loader, ÒAccount-)

Running 
As mentioned earlier, a bean is like any other object when it's running in an application. Normally, methods in
a bean aren't directly invoked from other beans. The bean connections determine what methods need to be
invoked. Event adapters enable indirect method invocation.

Beans can also be executed in a builder tool at design time. As mentioned before, an important requirement for
a bean to run in a builder tool is for the bean class to have a constructor with no arguments. This is because the
builder tool can't provide the constructor parameters. When there are many constructors, it can't decide which
one to use.

Java 2 has new Beans.instantiate() methods to facilitate the instantiation of applets and BeanContexts.

EJB 
The EJB execution phase consists of locating, instantiating and running.



1/13/2020 Print Story

java.sys-con.com/node/36515/print 8/10

Locating the EJB 
EJB clients locate the specific EJB container that contains the enterprise Bean through the JNDI. They then
make use of the EJB container to invoke bean methods. As you may be aware, JNDI allows multiple directory
services to coexist and even cooperate within the same JNDI client. Using JNDI, a user can navigate across
several directory and naming services while seeming to work with only one logical federated naming service.

Instantiating the EJBean 
Once EJB clients obtain a reference to the Home object, they can create the EJB by calling its create() method
or find EJBs by calling its find methods. This creates the EJBObject and the EJB component inside the EJB
container.

Invoking Methods on the EJBean 
The EJB client can now use the remote object reference to invoke methods on the EJBean by invoking its
remote methods, which form the business logic of the component. For example:

// get the JNDI naming context
Context initialCtx = new InitialContext ();

// use the context to lookup the EJB Home interface
AccountHome home=(AccountHome)initialCtx.lookup ("com/gopalan/Account");

// use the Home Interface to create a Session Bean object
Account account = home.create (1234, "Athul", 1000671.54d);

// invoke business methods account.credit (1000001.55d);

Transactions 
JB 
There is no explicit transactional support.

EJB

Declarative transaction management: The EJB container vendor is required to provide transaction
control. The EJB developer who is writing the business functionality needn't worry about starting and
terminating transactions. However, for maximum flexibility, the EJB spec provides for declarative
transaction management. Six declarative modes can be specified by the deployer:
TX_NOT_SUPPORTED, TX_BEAN_MANAGED, TX_REQUIRED, TX_SUPPORTS,
TX_REQUIRES_NEW, TX_MANDATORY.
Distributed transactional support: EJB provides transparency for distributed transactions. This means
that a client can begin a transaction and then invoke methods on EJBs present within two different
servers running on different machines, platforms or JVMs. Methods in one EJB can call methods in the
other EJB with the assurance that they'll execute in the same transaction context.

Security Services 
JB 
There are no special security APIs for JavaBeans.

EJB 
EJB provides authorization using the Java security model. EJB server implementations may choose to use
connection-based authentication in which the client program establishes a connection to the EJB server. The
client's identity is attached to the connection at connection establishment time. The EJB/CORBA mapping
specifies that the CORBA principal propagation mechanism be used. This means that the client ORB adds the
client's principal to each client request. The communication mechanism between the client and the server
propagates the client's identity to the server. Security in EJB 1.1 is declaratively defined in the deployment
descriptors and is role based.



1/13/2020 Print Story

java.sys-con.com/node/36515/print 9/10

Interoperability 
JB 
JavaBeans can interact with components built using other models, which includes the widely used Component
Object Model (COM). Using The Beans-ActiveX Bridge, a bean can be converted to an ActiveX control. A
converted ActiveX control can interoperate with other ActiveX controls in an ActiveX container.

EJB 
While The EJB spec allows the EJB server vendors to use any communication protocol between the client and
the server, The EJB/CORBA mapping document is prescriptive with respect to what goes on the wire. This
allows both system-level and application -level interoperability between products from vendors who choose to
implement the EJB/CORBA protocol as the underlying communication protocol.

Java clients will optionally communicate with server components using IIOP. They'll have a choice of API's -
either the Java RMI or the Java mapping of the CORBA IDL interface. Non-Java clients communicate with
server components using IIOP and the appropriate language mapping. Clients wishing to use the COM+
protocol communicate with the server component through a COM-CORBA bridge. Also realize that the client
of an EJB can itself be a server component (for instance, Java Server Pages or a servlet), so an HTTP-only
Web client can use a servlet to make EJB invocations.

An EJB can't be deployed as an ACtiveX control because those controls are intended to run at the desktop and
EJB's are server-side components. CORBA-IIOP compatibility via the EJB-to-CORBA mapping is defined by
the OMG. However, EJB components may be able to communicate with DCOM servers using a DCOM-
CORBA bridge.

Summary 
Table 3 summarizes the characteristics of JavaBeans and Enterprise JavaBeans.

Conclusion 
JavaBeans technology, now in its third year, has undergone the acid test of the industry. The original spec has
gone through a couple of iterations since its introduction. Although the spec may undergo further iterations,
many aspects of JavaBeans have been firmed up.

On the other hand, the EJB spec is just more than a year old and still evolving. Now at version 1.1, it provides
an excellent architectural foundation for building distributed enterprise-level business object systems. Some
areas in the spec need to be examined closely, however - most notably in the EJB model for handling
persistent objects. Standardizing the contract between development tools and systems to provide a uniform
debugging interface for all development environments is being considered as well. The specification will still
go though more iterations before becoming final.

The other issue is compatibility. There are two areas where compatibility is an issue. One is what actually
constitutes an "EJB-compatible" server. The other is guaranteeing that EJBs developed on servers from
different vendors can interoperate.

References

1. Cable, L. (1997). Glasgow Specification Version 99A. Sun Microsystems, July.
2. Enterprise JavaBeans Specification 1.1. Sun Microsystems, June 1999.
3. Hamilton, G., ed. (1997). JavaBeans Specification, Version 1.02. Sun Microsystems, July.
4. Rodrigues, L. (1997). "Java, The Next Generation: JavaBeans." Java Developer's Journal, Vol. 2, issue

1, January.
5. —(1998). The Awesome Power of JavaBeans. Manning.
6. Seshadri, G., and Raj, G.S. (1999). Enterprise Java Computing - Applications and Architecture.

SIGS/Cambridge University Press.

© 2008 SYS-CON Media Inc.



1/13/2020 Print Story

java.sys-con.com/node/36515/print 10/10


